Muutke küpsiste eelistusi

Hydrogen Bonded Polymers 2007 ed. [Kõva köide]

Contributions by , Edited by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by
  • Formaat: Hardback, 206 pages, kõrgus x laius: 235x155 mm, kaal: 500 g, XI, 206 p. With online files/update., 1 Hardback
  • Sari: Advances in Polymer Science 207
  • Ilmumisaeg: 16-Mar-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540685871
  • ISBN-13: 9783540685876
Teised raamatud teemal:
  • Kõva köide
  • Hind: 187,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 220,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 206 pages, kõrgus x laius: 235x155 mm, kaal: 500 g, XI, 206 p. With online files/update., 1 Hardback
  • Sari: Advances in Polymer Science 207
  • Ilmumisaeg: 16-Mar-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540685871
  • ISBN-13: 9783540685876
Teised raamatud teemal:
Control of polymeric structure is among the most important endeavours of modern macromolecular science. In particular, tailoring the positioning and strength of intermolecular forces within macromolecules by synthetic me- odsandthusgaining structuralcontrolover the nalpolymeric materials has become feasible, resulting in the ?eld of supramolecular polymer science. - sides other intermolecular forces, hydrogen bonds are unique intermolecular forces enabling the tuning of material properties via self-assembly processes -1 overawiderangeofinteractionstrengthrangingfromseveralkJmol tosev- -1 eraltensofkJmol . Centralfortheformationofthesestructuresareprecursor molecules of small molecular weight (usually lower than 10 000), which can assembleinsolidorsolutiontoaggregatesofde nedgeometry. Intermolecular hydrogenbondsatde nedpositionsofthesebuildingblocksaswellastheir- spectivestartinggeometryandtheinitialsizedeterminethemodeofassembly into supramolecular polymers forming network-, rodlike-, ?brous-, disclike- , helical-, lamellar- and chainlike architectures. In all cases, weak to strong hydrogen-bondinginteractionscanactasthecentralstructure-directingforce fortheorganizationofpolymerchainsandthusthe nalmaterials'properties. Theimportantcontributionofhydrogenbondstotheareaofsupramole- lar polymer chemistry is de nitely outstanding, most of all since the potency of hydrogen-bonding systems has been found to be unique in relation to other supramolecular interactions. Thus the high level of structural diversity of many hydrogen-bonding systems as well as their high level of direction- ity and speci city in recognition-phenomena is unbeaten in supramolecular chemistry. The realization, that their stability can be tuned over a wide range of binding strength is important for tuning the resulting material prop- ties, ranging from elastomeric to thermoplastic and even highly crosslinked duroplastic structures and networks. On the basis of the thermal reversib- ity, new materials with highly tunable properties can now be prepared, - ing able to change their mechanical and optoelectronic properties with very smallchangesofexternalstimuli. Thusthe eldofhydrogen-bondedpolymers forms the basis for stimuli responsive and adaptable materials of the future.

Muu info

Also available online
Supramolecular Polymers and Networks with Hydrogen Bonds in the Main and Side-Chain
W.H. Binder, R. Zirbs
1
1 Introduction
3
2 Hydrogen Bonds
5
3 Main Chain Hydrogen-Bonded Polymers
9
3.1 Monovalent Hydrogen Bonds (Liquid Crystalline Polymers and Polymer-Blends via H-bonding)
10
3.2 Polymers Connected with Bivalent Hydrogen Bonds
12
3.3 Polymers Connected with Trivalent Hydrogen Bonds
18
3.4 Polymers Connected with Quadruple Hydrogen Bonds
28
3.5 Polymers Connected with Multiple Hydrogen Bonds
39
3.6 Applications
51
4 Side-Chain Hydrogen-Bonded Polymers
51
5 Hydrogen Bonds on Surfaces
63
6 Conclusions and Future Outlook
70
References
71
Assembly via Hydrogen Bonds of Low Molar Mass Compounds into Supramolecular Polymers
L. Bouteiller
79
1 Introduction
81
2 Macroscopic Properties of HBSPs
82
2.1 Rheological Properties of HBSP Solutions
82
2.1.1 Ureidopyrimidinone (UPy)
82
2.1.2 Benzene-Tricarboxamide (BTC)
83
2.1.3 Cyclohexane-Tricarboxamide (CTC)
84
2.1.4 Bis-Urea
85
2.1.5 Oligopeptides
90
2.2 Material Properties of Bulk HBSPs
91
2.2.1 Amorphous Glasses
91
2.2.2 Macroscopic Fiber Formation
91
2.2.3 Elastic Materials
92
2.3 Liquid Crystallinity
93
3 Engineering Possibilities
94
3.1 Improving the Strength of the Association
94
3.2 Influence of the Solvent
96
3.3 Tuning the Ring-Chain Equilibrium
97
3.4 Copolymers
97
3.5 Introducing Branches or Crosslinks
98
3.6 Responsiveness Induced by External Triggers
98
3.7 Chirality
99
3.8 Coupling Electro-Optical Properties
100
3.9 Polarity of the Chain
100
3.10 Chain Stoppers
101
3.11 Surface Grafting
101
3.12 Covalent Capture
102
4 Molar Mass Measurement
102
4.1 Size Exclusion Chromatography (SEC)
104
4.2 Light Scattering
104
4.3 Small Angle Neutron Scattering (SANS)
104
4.4 Viscosimetry
104
4.5 Vapor Pressure Osmometry (VPO)
105
4.6 NMR Spectroscopy
105
4.7 FTIR Spectroscopy
105
4.8 Fluorescence Spectroscopy
105
4.9 Isothermal Titration Calorimetry (ITC)
106
5 Conclusions and Outlook
106
References
106
Supramolecular Materials Based on Hydrogen-Bonded Polymers
G. ten Brinke, J. Ruokolainen, O. Ikkala
113
1 Introduction
115
1.1 Design Principles of Polymer-Based Hydrogen-Bonded Supramolecules
118
2 Hydrogen-Bonded Block Copolymers
118
2.1 Theoretical Considerations
118
2.2 Experimental Results
122
3 Block Copolymer Blends with Hydrogen Bonding
125
3.1 Archimedian Tiling
126
3.2 Dilute Solution
128
4 Hydrogen-Bonded Comb Copolymers: Nonmesogenic Side Chains
129
4.1 Homopolymer-Based Hydrogen-Bonded Comb Copolymers
130
4.1.1 Self-Assembly in the Bulk State
130
4.1.2 Self-Assembly in Dilute Solution: Hollow Spheres
134
4.2 Block Copolymer-Based Hydrogen-Bonded Comb Copolymers
137
4.2.1 Self-Assembly in the Bulk State: Two Length-Scale Structures
137
4.3 Applications
141
4.3.1 Nanoscale Protonic Polymeric Conductors
141
4.3.2 Switching Protonic Conductivity
142
4.3.3 Tridirectional Protonic Conductivity
143
4.3.4 Photonic Bandgap Materials
144
4.3.5 Exploiting the Thermoreversibility of Side Chain Bonding: Nanoporous Membranes
146
4.3.6 Exploiting the Thermoreversibility of Side Chain Bonding: Nano-Objects
150
4.4 Conjugated Polymer-Based Hydrogen-Bonded Comb Copolymers
152
5 Hydrogen-Bonded Comb Copolymers: Mesogenic Side Chains
157
5.1 Homopolymer-Based Hydrogen-Bonded Side-Chain Liquid-Crystalline Copolymers
157
5.2 Block Copolymer-Based Hydrogen-Bonded Side-Chain Liquid-Crystalline Copolymers
161
5.2.1 Temperature-Dependent Photonic Bandgap
161
5.2.2 AC Orientational Switching
162
6 Layer-by-Layer Hydrogen Bonding Assembly
164
7 Hydrogen-Bonded Interpenetrating Polymer Networks: Reversible Volume Transitions
167
8 Conclusion and Outlook
169
References
170
Nanocomposites Based on Hydrogen Bonds
H. Xu, S. Srivastava, V.M. Rotello
179
1 Introduction to Polymer/Nanocomposites
179
2 Principles of Nanocomposite Design
181
2.1 Nanoparticles as Building Blocks
181
2.2 Polymer Scaffolds
182
2.3 Surface Modification and Patterning
183
3 Control of Structure and Functionality
184
3.1 Control of Interparticle Distance
185
3.2 Directed Assembly of Nanobuilding Blocks on Planar Substrates
187
3.3 Detailed Tailoring of Self-Organized Structures
190
3.4 Polymer and Nanoparticle 3D Aggregates in Solution
191
4 Conclusion and Outlook
195
References
196
Author Index Volumes 201-207 199
Subject Index 203