Muutke küpsiste eelistusi

Hydrogen Bonding in Polymeric Materials [Kõva köide]

  • Formaat: Hardback, 384 pages, kõrgus x laius x paksus: 252x178x23 mm, kaal: 953 g
  • Ilmumisaeg: 21-Mar-2018
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527341889
  • ISBN-13: 9783527341887
Teised raamatud teemal:
  • Formaat: Hardback, 384 pages, kõrgus x laius x paksus: 252x178x23 mm, kaal: 953 g
  • Ilmumisaeg: 21-Mar-2018
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527341889
  • ISBN-13: 9783527341887
Teised raamatud teemal:
Summarizing our current knowledge of the topic, this book describes the roles and effects of hydrogen bonding in polymer materials by reviewing the latest developments over recent years.
To this end, it discusses all relevant aspects from the fundamentals, via characterization, to properties and applications in various polymeric materials, including polymer blends, block copolymers, mesoporous materials, biomacromolecules and nanocomposites.
Invaluable reading for scientists in polymers and materials as well as those working in macromolecular chemistry.
Preface ix
Abbreviation xi
1 Hydrogen Bonding in Polymeric Materials 1(8)
1.1 Introduction
1(5)
1.1.1 Hydrogen Bonds
2(1)
1.1.2 Characterization of Hydrogen Bonding
3(3)
References
6(3)
2 Hydrogen Bonding in Polymer Blends 9(32)
2.1 Thermodynamic Properties of Polymer Blends
10(2)
2.2 Association Model Approach
12(2)
2.3 Measurement of Hydrogen Bonding Using Infrared Spectroscopy
14(6)
2.3.1 Self-Association Equilibrium Constants
14(3)
2.3.2 Interassociation Equilibrium Constants
17(3)
2.4 Factors Influencing Hydrogen Bonds
20(8)
2.4.1 Intramolecular Screening Effect
21(1)
2.4.2 Functional Group Accessibility
21(2)
2.4.3 Acidity of H-Bond Donor Groups
23(1)
2.4.4 Basicity of H-Bond Acceptor Groups
24(1)
2.4.5 Steric Hindrance
25(1)
2.4.6 Bulky Group Effect
25(1)
2.4.7 Temperature Effect
26(2)
2.4.8 Solvent Effect
28(1)
2.5 Miscibility Enhancement Through Hydrogen Bonding
28(8)
2.5.1 Miscibility Characterization
28(2)
2.5.2 Incorporation of H-Bonding Functional Groups in Polymer Chains
30(2)
2.5.3 Effect of Inert Diluent Segment
32(1)
2.5.4 Ternary Polymer Blends
33(3)
References
36(5)
3 Physical Properties of Hydrogen-Bonded Polymers 41(20)
3.1 Glass Transition Temperatures
41(9)
3.1.1 Positive Deviation of Glass Transition Temperature
41(7)
3.1.2 Negative Deviation of Glass Transition Temperature
48(2)
3.2 Melting Temperature (Tm)
50(1)
3.3 Dynamic Behavior
51(3)
3.4 Crystallization Behavior
54(2)
References
56(5)
4 Surface Properties of Hydrogen-Bonded Polymers 61(32)
4.1 Low Surface Energy Polymers
61(17)
4.1.1 Polybenzoxazines
63(4)
4.1.2 Poly(vinyl phenol)
67(5)
4.1.3 Antisticking Applications of PBZs
72(1)
4.1.4 Tuning the Surface Properties of PBZ Thin Films
73(5)
4.2 Superhydrophobic Surfaces
78(10)
4.2.1 Superhydrophobic Surfaces of PBZ after Plasma Treatment
80(2)
4.2.2 PBZ/SiO2 Hybrid Superhydrophobic Surfaces
82(3)
4.2.3 PBZ/CNT Hybrid Superhydrophobic Surfaces
85(3)
References
88(5)
5 Sequence Distribution Effects in Hydrogen-Bonded Copolymers 93(14)
5.1 Block Copolymers versus Random Copolymers
93(5)
5.2 Block Copolymers versus Polymer Blends
98(4)
5.3 Separated Coils versus Chain Aggregates
102(3)
References
105(2)
6 Hydrogen Bond-Mediated Self-Assembled Structures of Block Copolymers 107(60)
6.1 Self-Assembled Structures in the Bulk State
107(33)
6.1.1 Mixtures of Diblock Copolymers and Low-Molecular-Weight Compounds
109(2)
6.1.2 Diblock Copolymer/Homopolymer Mixtures
111(22)
6.1.2.1 Immiscible A-B Diblock Segments; C is Miscible With B, but Immiscible With A
111(8)
6.1.2.2 Immiscible A-B Diblock Segments; C is Miscible with Both A and B
119(7)
6.1.2.3 Miscible A and B Diblock Segments; C is Miscible with Both A and B
126(4)
6.1.2.4 Miscible A and B Diblock Segments; C is Miscible with B, but Immiscible with A
130(3)
6.1.3 Diblock Copolymer Mixture
133(7)
6.2 Self-Assembled Structures in Solution
140(19)
6.2.1 Mixtures of Block Copolymers and Low-Molecular-Weight Compounds
141(4)
6.2.2 Block Copolymer/Homopolymer Mixtures
145(2)
6.2.3 Diblock Copolymer Mixtures
147(5)
6.2.4 Noncovalently Bonded Micelles (Block-Free Copolymers)
152(7)
References
159(8)
7 Mesoporous Materials Prepared Through Hydrogen Bonding 167(52)
7.1 Mesoporous Silica Materials
167(30)
7.1.1 Monomodal Mesoporous Silicas by A-B Block Copolymer
169(10)
7.1.2 Monomodal Mesoporous Silicas Formed Using A-B Block Copolymer/Homopolymer Blends
179(7)
7.1.3 Hierarchical Mesoporous Silica Materials
186(11)
7.2 Mesoporous Phenolic/Carbon Materials
197(18)
7.2.1 Mesoporous Phenolic/Carbon Materials from A-B Block Copolymers
197(10)
7.2.2 Mesoporous Phenolic/Carbon Materials from A-B Block Copolymer/Homopolymer Blends
207(6)
7.2.3 Mesoporous Phenolic/Carbon Materials from A-B-C Triblock Copolymers
213(2)
References
215(4)
8 Bioinspired Hydrogen Bonding in Biomacromolecules 219(68)
8.1 Polypeptides
219(33)
8.1.1 Secondary Structural Characterization of Polypeptides
221(5)
8.1.2 Secondary and Self-Assembled Structures of Polypeptide-Based Blends
226(18)
8.1.3 Secondary and Self-Assembled Structures through Polypeptide-Based Block Copolymer
244(8)
8.2 DNA-Like Multiple H-Bonding Interactions in Polymers
252(29)
8.2.1 Supramolecular Polymer Blends Featuring Multiple H-Bonding Interactions
252(7)
8.2.2 Thermoplastic Supramolecular Polymeric Elastomers
259(3)
8.2.3 Self-Healing Supramolecular Polymers
262(1)
8.2.4 Optoelectronic Supramolecular Polymers
263(4)
8.2.5 Supramolecular Polymers with Carbon Nanotubes
267(8)
8.2.6 Double-Helical Supramolecular Polymers
275(6)
References
281(6)
9 Hydrogen Bonding in POSS Nanocomposites 287(70)
9.1 Introduction to POSS Nanocomposites
287(1)
9.2 General Approaches for Synthesizing POSS Compounds
288(4)
9.2.1 Monofunctional POSS Compounds
288(1)
9.2.2 Bifunctional POSS Compounds
289(3)
9.2.3 Multifunctional POSS Compounds
292(1)
9.3 Varying the Miscibility of Polymer/POSS Nanocomposites through H-Bonding
292(5)
9.4 POSS Nanocomposites by H-Bonding Interaction
297(51)
9.4.1 Phenolic Systems
297(9)
9.4.2 PVPh Systems
306(5)
9.4.3 PNIPAm Systems
311(1)
9.4.4 Polypeptide Systems
312(5)
9.4.5 Polybenzoxazine Systems
317(6)
9.4.6 Polyimide Systems
323(12)
9.4.7 Photoresist Systems
335(2)
9.4.8 Nanoparticle Systems
337(11)
9.4.8.1 POSS NPs Presenting Various Functional Groups
337(7)
9.4.8.2 POSS NP-Modified Clay
344(1)
9.4.8.3 POSS-Modified Gold Nanoparticles
345(3)
References
348(9)
Index 357
Shiao-Wei Kuo is Professor in the Department of Materials and Optoelectronic Science at National Sun Yat-Sen University, Taiwan. He received his PhD in Applied Chemistry from National Chiao-Tung University, Taiwan. After some years of postdoctoral research work there and in the University of Akron, USA, he joined National Sun Yat-Sen University as a faculty member. His research interests include polymers, supramolecules, self-assembly nanostructures, mesoporous materials, POSS nanocomposites, low surface free energy materials, and polypeptides. He has published over 300 research papers and several book chapters.