|
1 Model Selection Loglinear Analysis |
|
|
1 | (24) |
|
Loglinear Modeling Basics |
|
|
2 | (8) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
Examining Parameters in a Saturated Model |
|
|
6 | (2) |
|
Calculating the Missing Parameter Estimates |
|
|
8 | (1) |
|
Testing Hypotheses about Parameters |
|
|
9 | (1) |
|
Fitting an Independence Model |
|
|
10 | (4) |
|
|
11 | (1) |
|
|
11 | (2) |
|
Chi-Square Goodness-of-Fit Tests |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
14 | (6) |
|
|
15 | (4) |
|
Testing Individual Terms in the Model |
|
|
19 | (1) |
|
Model Selection Using Backward Elimination |
|
|
20 | (5) |
|
2 Logit Loglinear Analysis |
|
|
25 | (18) |
|
|
26 | (4) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
Parameter Estimates for the Saturated Logit Model |
|
|
28 | (2) |
|
|
30 | (5) |
|
|
30 | (1) |
|
Goodness-of-Fit Statistics |
|
|
31 | (1) |
|
Observed and Expected Cell Counts |
|
|
31 | (1) |
|
|
32 | (1) |
|
Measures of Dispersion and Association |
|
|
33 | (2) |
|
Polychotomous Logit Model |
|
|
35 | (7) |
|
|
36 | (1) |
|
Goodness of Fit of the Model |
|
|
36 | (1) |
|
Interpreting Parameter Estimates |
|
|
37 | (4) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
3 Multinomial Logistic Regression |
|
|
43 | (26) |
|
|
44 | (1) |
|
|
44 | (2) |
|
|
46 | (8) |
|
|
46 | (5) |
|
Likelihood-Ratio Test for Individual Effects |
|
|
51 | (1) |
|
Likelihood-Ratio Test for the Overall Model |
|
|
52 | (2) |
|
|
54 | (5) |
|
Calculating Predicted Probabilities and Expected Frequencies |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (2) |
|
|
58 | (1) |
|
|
58 | (1) |
|
Correcting for Overdispersion |
|
|
59 | (1) |
|
Automated Variable Selection |
|
|
59 | (4) |
|
Hierarchical Variable Entry |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (2) |
|
Likelihood-Ratio Tests for Individual Effects |
|
|
63 | (1) |
|
Matched Case-Control Studies |
|
|
63 | (6) |
|
|
64 | (1) |
|
Creating the Difference Variables |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
67 | (2) |
|
|
69 | (22) |
|
Fitting an Ordinal Logit Model |
|
|
70 | (13) |
|
Modeling Cumulative Counts |
|
|
70 | (3) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (2) |
|
Comparing Observed and Expected Counts |
|
|
77 | (1) |
|
Including Additional Predictor Variables |
|
|
78 | (1) |
|
|
79 | (2) |
|
Measuring Strength of Association |
|
|
81 | (1) |
|
|
82 | (1) |
|
Generalized Linear Models |
|
|
83 | (2) |
|
|
83 | (2) |
|
Fitting a Heteroscedastic Probit Model |
|
|
85 | (6) |
|
Modeling Signal Detection |
|
|
85 | (1) |
|
Fitting a Location-Only Model |
|
|
86 | (2) |
|
Fitting a Scale Parameter |
|
|
88 | (1) |
|
|
88 | (1) |
|
Model-Fitting Information |
|
|
89 | (2) |
|
|
91 | (12) |
|
Probit and Logit Response Models |
|
|
92 | (8) |
|
|
93 | (3) |
|
Confidence Intervals for Effective Dosages |
|
|
96 | (1) |
|
|
97 | (3) |
|
Comparing Relative Potencies of the Agents |
|
|
100 | (3) |
|
Estimating the Natural Response Rate |
|
|
101 | (1) |
|
More than One Stimulus Variable |
|
|
101 | (2) |
|
6 Kaplan-Meier Survival Analysis |
|
|
103 | (18) |
|
IBM SPSS Statistics Procedures for Survival Data |
|
|
103 | (1) |
|
|
104 | (3) |
|
Calculating Length of Time |
|
|
106 | (1) |
|
Estimating the Survival Function |
|
|
107 | (5) |
|
Estimating the Conditional Probability of Survival |
|
|
107 | (1) |
|
Estimating the Cumulative Probability of Survival |
|
|
108 | (1) |
|
The IBM SPSS Statistics Kaplan-Meier Table |
|
|
109 | (2) |
|
Plotting Survival Functions |
|
|
111 | (1) |
|
Comparing Survival Functions |
|
|
112 | (9) |
|
|
112 | (1) |
|
|
113 | (3) |
|
Stratified Comparisons of Survival Functions |
|
|
116 | (5) |
|
|
121 | (12) |
|
|
121 | (12) |
|
Studying Employment Longevity |
|
|
122 | (1) |
|
|
123 | (2) |
|
Calculating Survival Probabilities |
|
|
125 | (3) |
|
Assumptions Needed to Use the Life Table |
|
|
128 | (1) |
|
|
129 | (1) |
|
Plotting Survival Functions |
|
|
129 | (2) |
|
Comparing Survival Functions |
|
|
131 | (2) |
|
|
133 | (38) |
|
|
134 | (2) |
|
|
135 | (1) |
|
Proportional Hazards Assumption |
|
|
136 | (1) |
|
|
136 | (12) |
|
Coding Categorical Variables |
|
|
137 | (1) |
|
|
138 | (1) |
|
Testing Hypotheses about the Coefficient |
|
|
139 | (1) |
|
Interpreting the Regression Coefficient |
|
|
140 | (1) |
|
Baseline Hazard and Cumulative Survival Rates |
|
|
141 | (1) |
|
Including Multiple Covariates |
|
|
142 | (1) |
|
Model with Three Covariates |
|
|
142 | (2) |
|
Global Tests of the Model |
|
|
144 | (2) |
|
Plotting the Estimated Functions |
|
|
146 | (2) |
|
Checking the Proportional Hazards Assumption |
|
|
148 | (2) |
|
|
148 | (1) |
|
Log-Minus-Log Survival Plot |
|
|
149 | (1) |
|
Identifying Influential Cases |
|
|
150 | (1) |
|
|
151 | (4) |
|
Partial (Schoenfeld) Residuals |
|
|
152 | (1) |
|
|
152 | (3) |
|
Selecting Predictor Variables |
|
|
155 | (8) |
|
Variable Selection Methods |
|
|
155 | (1) |
|
An Example of Forward Selection |
|
|
156 | (5) |
|
Omnibus Test of the Model At Each Step |
|
|
161 | (2) |
|
Time-Dependent Covariates |
|
|
163 | (5) |
|
|
163 | (2) |
|
Specifying a Time-Dependent Covariate |
|
|
165 | (2) |
|
Calculating Segmented Time-Dependent Covariates |
|
|
167 | (1) |
|
Testing the Proportional Hazard Assumption with a Time-Dependent Covariate |
|
|
167 | (1) |
|
Fitting a Conditional Logistic Regression Model |
|
|
168 | (3) |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
170 | (1) |
|
|
171 | (24) |
|
Factors, Effects, and Models |
|
|
171 | (2) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
Model for One-Way Classification |
|
|
173 | (7) |
|
|
174 | (5) |
|
Negative Variance Estimates |
|
|
179 | (1) |
|
Nested Design Model for Two-Way Classification |
|
|
180 | (4) |
|
Univariate Repeated Measures Analysis Using a Mixed Model Approach |
|
|
184 | (6) |
|
|
190 | (5) |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
192 | (3) |
|
|
195 | (50) |
|
|
195 | (50) |
|
|
197 | (2) |
|
Example 1 Unconditional Random-Effects Models |
|
|
199 | (7) |
|
Example 2 Adding a Gender Fixed Effect |
|
|
206 | (5) |
|
Example 3 Hierarchical Models |
|
|
211 | (4) |
|
Example 4 Random-Coefficient Model |
|
|
215 | (3) |
|
Example 5 A Model with School-Level and Individual-Level Covariates |
|
|
218 | (4) |
|
Example 6 A Three-Level Hierarchical Model |
|
|
222 | (5) |
|
Example 7 Repeated Measurements |
|
|
227 | (10) |
|
Example 8 Selecting a Residual Covariance Structure |
|
|
237 | (8) |
|
11 Generalized Linear Models |
|
|
245 | (34) |
|
The Basics of Generalized Linear Models |
|
|
246 | (1) |
|
Selecting the Type of Model |
|
|
247 | (3) |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
249 | (1) |
|
Selecting a Link Function |
|
|
250 | (2) |
|
Fitting a Logistic Regression |
|
|
252 | (7) |
|
|
253 | (1) |
|
|
254 | (1) |
|
How Well Does the Model Fit? |
|
|
254 | (5) |
|
Testing Hypotheses about Coefficients |
|
|
259 | (3) |
|
Testing Hypotheses about Effects |
|
|
260 | (2) |
|
|
262 | (1) |
|
Fitting a Poisson Rate Model |
|
|
262 | (5) |
|
|
264 | (1) |
|
|
264 | (2) |
|
Interpreting the Parameter Estimates |
|
|
266 | (1) |
|
|
267 | (2) |
|
|
268 | (1) |
|
Fitting a Poisson Count Model |
|
|
269 | (3) |
|
Overdispersion and Underdispersion |
|
|
270 | (2) |
|
Fitting a Loglinear Model |
|
|
272 | (2) |
|
|
272 | (1) |
|
|
273 | (1) |
|
Fitting a Gamma Distribution to Survival Time |
|
|
274 | (5) |
|
|
274 | (2) |
|
|
276 | (3) |
|
12 Generalized Estimating Equations |
|
|
279 | (18) |
|
|
279 | (11) |
|
|
280 | (1) |
|
|
281 | (2) |
|
|
283 | (2) |
|
|
285 | (1) |
|
Comparing Correlation Structures |
|
|
286 | (3) |
|
|
289 | (1) |
|
|
289 | (1) |
|
|
290 | (7) |
|
|
292 | (3) |
|
|
295 | (2) |
|
13 Generalized Linear Mixed Models |
|
|
297 | (26) |
|
The Generalized Linear Mixed Model |
|
|
298 | (6) |
|
Using the IBM SPSS Generalized Linear Mixed Model Procedure |
|
|
299 | (1) |
|
Describing the Structure of the Data |
|
|
299 | (2) |
|
Identifying the Fields and Effects |
|
|
301 | (3) |
|
Examining Results in the Model Viewer |
|
|
304 | (9) |
|
|
304 | (1) |
|
|
304 | (1) |
|
|
305 | (3) |
|
Random Effect Covariances |
|
|
308 | (2) |
|
Plot of Observed and Predicted Values of the Target Variable |
|
|
310 | (1) |
|
Estimated Means: Significant Effects |
|
|
311 | (2) |
|
Logistic Regression with Correlated Data |
|
|
313 | (6) |
|
|
314 | (1) |
|
|
314 | (2) |
|
|
316 | (1) |
|
|
316 | (1) |
|
|
317 | (2) |
|
|
319 | (1) |
|
Analyzing Repeated Measures Data |
|
|
319 | (1) |
|
|
320 | (3) |
|
|
323 | (18) |
|
What Is a Nonlinear Model? |
|
|
323 | (3) |
|
Transforming Nonlinear Models |
|
|
324 | (1) |
|
Intrinsically Nonlinear Models |
|
|
325 | (1) |
|
Fitting a Logistic Population Growth Model |
|
|
326 | (8) |
|
Estimating a Nonlinear Model |
|
|
326 | (1) |
|
|
327 | (1) |
|
|
328 | (4) |
|
Approximate Confidence Intervals for the Parameters |
|
|
332 | (1) |
|
|
332 | (2) |
|
Estimating Starting Values |
|
|
334 | (2) |
|
Use Starting Values from Previous Analysis |
|
|
334 | (1) |
|
Look for a Linear Approximation |
|
|
334 | (1) |
|
Use Properties of the Nonlinear Model |
|
|
335 | (1) |
|
Solve a System of Equations |
|
|
335 | (1) |
|
|
336 | (1) |
|
Additional Nonlinear Regression Options |
|
|
336 | (1) |
|
Nonlinear Regression Common Models |
|
|
337 | (1) |
|
Specifying a Segmented Model |
|
|
338 | (3) |
|
15 Two-Stage Least-Squares Regression |
|
|
341 | (10) |
|
|
341 | (1) |
|
Demand-Price-Income Economic Model |
|
|
342 | (3) |
|
Estimation with Ordinary Least Squares |
|
|
343 | (1) |
|
Feedback and Correlated Errors |
|
|
343 | (2) |
|
|
345 | (6) |
|
|
346 | (1) |
|
|
347 | (1) |
|
Stage 2 Estimating the Model |
|
|
348 | (1) |
|
2-Stage Least Squares Procedure |
|
|
349 | (2) |
|
16 Weighted Least-Squares Regression |
|
|
351 | (10) |
|
|
351 | (2) |
|
|
353 | (4) |
|
Estimating Weights as Powers |
|
|
354 | (1) |
|
|
355 | (1) |
|
Examining the Log-Likelihood Functions |
|
|
355 | (1) |
|
|
356 | (1) |
|
Estimating Weights from Replicates |
|
|
357 | (1) |
|
Diagnostics from the Linear Regression Procedure |
|
|
357 | (4) |
|
17 Multidimensional Scaling |
|
|
361 | (70) |
|
Data, Models, and Analysis of Multidimensional Scaling |
|
|
362 | (4) |
|
|
363 | (3) |
|
Nature of Data Analyzed in MDS |
|
|
366 | (3) |
|
Measurement Level of Data |
|
|
366 | (1) |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
368 | (1) |
|
|
369 | (17) |
|
Example: Flying Mileages Revisited |
|
|
369 | (4) |
|
|
373 | (3) |
|
|
376 | (4) |
|
Example: Ranked Flying Mileages |
|
|
380 | (6) |
|
|
386 | (1) |
|
|
387 | (12) |
|
|
387 | (3) |
|
Example: Perceived Body-Part Structure |
|
|
390 | (9) |
|
|
399 | (1) |
|
Geometry of the Weighted Euclidean Model |
|
|
400 | (6) |
|
Algebra of the Weighted Euclidean Model |
|
|
406 | (2) |
|
Matrix Algebra of the Weighted Euclidean Model |
|
|
408 | (2) |
|
|
410 | (1) |
|
Example: Perceived Body-Part Structure |
|
|
411 | (13) |
|
|
424 | (4) |
|
|
428 | (3) |
Bibliography |
|
431 | (6) |
Index |
|
437 | |