Preface to the First Edition |
|
xiii | |
Preface to the Second Edition |
|
xv | |
Preface to the Third Edition |
|
xvii | |
Preface to the Fourth Edition |
|
xx | |
Author Biography |
|
xxi | |
|
1 Images, Arrays, and Matrices |
|
|
1 | (30) |
|
1.1 Multispectral satellite images |
|
|
4 | (3) |
|
1.2 Synthetic aperture radar images |
|
|
7 | (3) |
|
1.3 Algebra of vectors and matrices |
|
|
10 | (7) |
|
1.3.1 Elementary properties |
|
|
11 | (2) |
|
|
13 | (2) |
|
|
15 | (1) |
|
1.3.4 Symmetric, positive definite matrices |
|
|
15 | (1) |
|
1.3.5 Linear dependence and vector spaces |
|
|
16 | (1) |
|
1.4 Eigenvalues and eigenvectors |
|
|
17 | (2) |
|
1.5 Singular value decomposition |
|
|
19 | (2) |
|
1.6 Finding minima and maxima |
|
|
21 | (6) |
|
|
27 | (4) |
|
|
31 | (52) |
|
|
31 | (13) |
|
2.1.1 Discrete random variables |
|
|
32 | (1) |
|
2.1.2 Continuous random variables |
|
|
33 | (3) |
|
|
36 | (3) |
|
2.1.4 The normal distribution |
|
|
39 | (2) |
|
2.1.5 The gamma distribution and its derivatives |
|
|
41 | (3) |
|
|
44 | (6) |
|
|
44 | (3) |
|
2.2.2 Sample distributions and interval estimators |
|
|
47 | (3) |
|
2.3 Multivariate distributions |
|
|
50 | (7) |
|
2.3.1 Vector sample functions and the data matrix |
|
|
51 | (2) |
|
|
53 | (2) |
|
2.3.3 Real and complex multivariate sample distributions |
|
|
55 | (2) |
|
2.4 Bayes' Theorem, likelihood and classification |
|
|
57 | (3) |
|
|
60 | (5) |
|
2.6 Ordinary linear regression |
|
|
65 | (8) |
|
2.6.1 One independent variable |
|
|
65 | (2) |
|
2.6.2 Coefficient of determination (R2) |
|
|
67 | (1) |
|
2.6.3 More than one independent variable |
|
|
68 | (4) |
|
2.6.4 Regularization, duality and the Gram matrix |
|
|
72 | (1) |
|
2.7 Entropy and information |
|
|
73 | (4) |
|
2.7.1 Kullback-Leibler divergence |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (6) |
|
|
83 | (44) |
|
3.1 The discrete Fourier transform |
|
|
83 | (5) |
|
3.2 The discrete wavelet transform |
|
|
88 | (15) |
|
|
89 | (4) |
|
|
93 | (3) |
|
3.2.3 Multiresolution analysis |
|
|
96 | (7) |
|
|
103 | (9) |
|
3.3.1 Principal components on the GEE |
|
|
105 | (2) |
|
3.3.2 Image compression and reconstruction |
|
|
107 | (4) |
|
|
111 | (1) |
|
|
111 | (1) |
|
3.4 Minimum noise fraction |
|
|
112 | (5) |
|
|
113 | (3) |
|
3.4.2 Minimum noise fraction via PCA |
|
|
116 | (1) |
|
|
117 | (6) |
|
3.5.1 Maximum autocorrelation factor |
|
|
117 | (2) |
|
|
119 | (4) |
|
|
123 | (4) |
|
4 Filters, Kernels, and Fields |
|
|
127 | (32) |
|
4.1 The Convolution Theorem |
|
|
127 | (5) |
|
|
132 | (3) |
|
4.3 Wavelets and filter banks |
|
|
135 | (9) |
|
4.3.1 One-dimensional arrays |
|
|
136 | (5) |
|
4.3.2 Two-dimensional arrays |
|
|
141 | (3) |
|
|
144 | (8) |
|
|
144 | (5) |
|
|
149 | (3) |
|
4.5 Gibbs-Markov random fields |
|
|
152 | (4) |
|
|
156 | (3) |
|
5 Image Enhancement and Correction |
|
|
159 | (72) |
|
5.1 Lookup tables and histogram functions |
|
|
159 | (2) |
|
5.2 High-pass spatial filtering and feature extraction |
|
|
161 | (16) |
|
|
161 | (3) |
|
5.2.2 Laplacian-of-Gaussian filter |
|
|
164 | (2) |
|
5.2.3 OpenCV and GEE algorithms |
|
|
166 | (5) |
|
|
171 | (6) |
|
5.3 Panchromatic sharpening |
|
|
177 | (8) |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (3) |
|
|
184 | (1) |
|
5.4 Radiometric correction of polarimetric SAR imagery |
|
|
185 | (15) |
|
|
185 | (3) |
|
|
188 | (5) |
|
|
193 | (7) |
|
5.5 Topographic correction |
|
|
200 | (16) |
|
5.5.1 Rotation, scaling and translation |
|
|
201 | (1) |
|
5.5.2 Imaging transformations |
|
|
202 | (1) |
|
5.5.3 Camera models and RFM approximations |
|
|
203 | (2) |
|
5.5.4 Stereo imaging and digital elevation models |
|
|
205 | (5) |
|
|
210 | (1) |
|
5.5.6 Illumination correction |
|
|
211 | (5) |
|
5.6 Image--image registration |
|
|
216 | (9) |
|
5.6.1 Frequency domain registration |
|
|
217 | (2) |
|
|
219 | (4) |
|
5.6.3 Re-sampling with ground control points |
|
|
223 | (2) |
|
|
225 | (6) |
|
6 Supervised Classification Part 1 |
|
|
231 | (58) |
|
6.1 Maximizing the a posteriori probability |
|
|
233 | (1) |
|
6.2 Training data and separability |
|
|
234 | (5) |
|
6.3 Maximum likelihood classification |
|
|
239 | (6) |
|
6.3.1 Naive Bayes on the GEE |
|
|
240 | (1) |
|
6.3.2 Python scripts for supervised classification |
|
|
241 | (4) |
|
6.4 Gaussian kernel classification |
|
|
245 | (3) |
|
|
248 | (22) |
|
6.5.1 The neural network classifier |
|
|
253 | (3) |
|
|
256 | (2) |
|
|
258 | (6) |
|
6.5.4 A deep learning network |
|
|
264 | (4) |
|
6.5.5 Overfitting and generalization |
|
|
268 | (2) |
|
6.6 Support vector machines |
|
|
270 | (14) |
|
6.6.1 Linearly separable classes |
|
|
270 | (6) |
|
6.6.2 Overlapping classes |
|
|
276 | (2) |
|
6.6.3 Solution with sequential minimal optimization |
|
|
278 | (1) |
|
|
279 | (1) |
|
6.6.5 Kernel substitution |
|
|
280 | (4) |
|
|
284 | (5) |
|
7 Supervised Classification Part 2 |
|
|
289 | (40) |
|
|
289 | (4) |
|
|
290 | (1) |
|
7.1.2 Probabilistic label relaxation |
|
|
290 | (3) |
|
7.2 Evaluation and comparison of classification accuracy |
|
|
293 | (13) |
|
7.2.1 Accuracy assessment |
|
|
293 | (5) |
|
7.2.2 Accuracy assessment on the GEE |
|
|
298 | (1) |
|
7.2.3 Cross-validation on parallel architectures |
|
|
299 | (3) |
|
|
302 | (4) |
|
|
306 | (6) |
|
7.4 Classification of polarimetric SAR imagery |
|
|
312 | (2) |
|
7.5 Hyperspectral image analysis |
|
|
314 | (12) |
|
7.5.1 Spectral mixture modeling |
|
|
314 | (3) |
|
7.5.2 Unconstrained linear unmixing |
|
|
317 | (1) |
|
7.5.3 Intrinsic end-members and pixel purity |
|
|
318 | (1) |
|
7.5.4 Anomaly detection: The RX algorithm |
|
|
319 | (3) |
|
7.5.5 Anomaly detection: The kernel RX algorithm |
|
|
322 | (4) |
|
|
326 | (3) |
|
8 Unsupervised Classification |
|
|
329 | (46) |
|
8.1 Simple cost functions |
|
|
330 | (2) |
|
8.2 Algorithms that minimize the simple cost functions |
|
|
332 | (17) |
|
|
333 | (5) |
|
8.2.2 Kernel K-means clustering |
|
|
338 | (3) |
|
8.2.3 Extended K-means clustering |
|
|
341 | (3) |
|
8.2.4 Agglomerative hierarchical clustering |
|
|
344 | (3) |
|
8.2.5 Fuzzy K-means clustering |
|
|
347 | (2) |
|
8.3 Gaussian mixture clustering |
|
|
349 | (5) |
|
8.3.1 Expectation maximization |
|
|
350 | (3) |
|
8.3.2 Simulated annealing |
|
|
353 | (1) |
|
|
353 | (1) |
|
8.3.4 Implementation notes |
|
|
354 | (1) |
|
8.4 Including spatial information |
|
|
354 | (6) |
|
8.4.1 Multiresolution clustering |
|
|
354 | (3) |
|
|
357 | (3) |
|
|
360 | (2) |
|
8.6 The Kohonen self-organizing map |
|
|
362 | (4) |
|
8.7 Image segmentation and the mean shift |
|
|
366 | (2) |
|
|
368 | (7) |
|
|
375 | (52) |
|
|
376 | (2) |
|
9.2 Principal components analysis (PCA) |
|
|
378 | (6) |
|
|
380 | (2) |
|
|
382 | (2) |
|
9.3 Multivariate alteration detection (MAD) |
|
|
384 | (13) |
|
9.3.1 Canonical correlation analysis (CCA) |
|
|
385 | (3) |
|
9.3.2 Orthogonality properties |
|
|
388 | (1) |
|
9.3.3 Iteratively re-weighted MAD |
|
|
389 | (2) |
|
|
391 | (1) |
|
9.3.5 Correlation with the original observations |
|
|
392 | (2) |
|
|
394 | (2) |
|
|
396 | (1) |
|
9.4 Unsupervised change classification |
|
|
397 | (2) |
|
9.5 iMAD on the Google Earth Engine |
|
|
399 | (2) |
|
9.6 Change detection with polarimetric SAR imagery |
|
|
401 | (14) |
|
9.6.1 Scalar imagery: the gamma distribution |
|
|
402 | (3) |
|
9.6.2 Polarimetric imagery: the complex Wishart distribution |
|
|
405 | (4) |
|
|
409 | (4) |
|
9.6.4 SAR change detection on the Google Earth Engine |
|
|
413 | (2) |
|
9.7 Radiometric normalization of visual/infrared images |
|
|
415 | (7) |
|
9.7.1 Scatterplot matching |
|
|
416 | (3) |
|
9.7.2 Automatic radiometric normalization |
|
|
419 | (3) |
|
9.8 RESTful change detection on the GEE |
|
|
422 | (1) |
|
|
422 | (5) |
|
|
427 | (14) |
|
A.1 Cholesky decomposition |
|
|
427 | (2) |
|
A.2 Vector and inner product spaces |
|
|
429 | (1) |
|
A.3 Complex numbers, vectors and matrices |
|
|
430 | (2) |
|
A.4 Least squares procedures |
|
|
432 | (5) |
|
A.4.1 Recursive linear regression |
|
|
432 | (2) |
|
A.4.2 Orthogonal linear regression |
|
|
434 | (3) |
|
|
437 | (4) |
|
B Efficient Neural Network Training Algorithms |
|
|
441 | (22) |
|
|
441 | (6) |
|
|
442 | (3) |
|
B.1.2 Calculating the Hessian |
|
|
445 | (2) |
|
B.2 Scaled conjugate gradient training |
|
|
447 | (8) |
|
B.2.1 Conjugate directions |
|
|
447 | (2) |
|
B.2.2 Minimizing a quadratic function |
|
|
449 | (2) |
|
|
451 | (4) |
|
B.3 Extended Kalman filter training |
|
|
455 | (8) |
|
|
456 | (1) |
|
|
457 | (6) |
|
|
463 | (24) |
|
|
463 | (1) |
|
C.2 Command line utilities |
|
|
464 | (1) |
|
|
464 | (1) |
|
|
464 | (1) |
|
|
465 | (1) |
|
|
465 | (1) |
|
|
465 | (19) |
|
|
466 | (1) |
|
|
466 | (1) |
|
|
467 | (1) |
|
|
467 | (1) |
|
|
468 | (1) |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
470 | (1) |
|
|
470 | (1) |
|
|
471 | (1) |
|
|
471 | (1) |
|
|
472 | (1) |
|
|
472 | (1) |
|
|
473 | (1) |
|
|
473 | (1) |
|
|
474 | (1) |
|
|
474 | (1) |
|
|
475 | (1) |
|
|
476 | (1) |
|
|
476 | (1) |
|
|
476 | (1) |
|
|
477 | (1) |
|
|
477 | (1) |
|
|
477 | (1) |
|
|
478 | (1) |
|
|
478 | (1) |
|
|
478 | (1) |
|
|
479 | (1) |
|
|
479 | (1) |
|
|
480 | (1) |
|
|
480 | (1) |
|
|
481 | (1) |
|
|
482 | (1) |
|
|
482 | (1) |
|
|
483 | (1) |
|
|
483 | (1) |
|
|
484 | (1) |
|
C.5 JavaScript on the GEE Code Editor |
|
|
484 | (3) |
|
|
484 | (1) |
|
|
484 | (1) |
|
|
485 | (1) |
|
|
485 | (1) |
|
|
485 | (1) |
|
|
485 | (2) |
Mathematical Notation |
|
487 | (2) |
References |
|
489 | (12) |
Index |
|
501 | |