Preface to the First Edition |
|
xi | |
Preface to the Second Edition |
|
xiii | |
Preface to the Third Edition |
|
xv | |
List of Figures |
|
xvii | |
Program Listings |
|
xxiii | |
1 Images, Arrays, and Matrices |
|
1 | (34) |
|
1.1 Multispectral satellite images |
|
|
4 | (4) |
|
1.2 Synthetic aperture radar images |
|
|
8 | (3) |
|
1.3 Algebra of vectors and matrices |
|
|
11 | (7) |
|
1.3.1 Elementary properties |
|
|
11 | (3) |
|
|
14 | (2) |
|
|
16 | (1) |
|
1.3.4 Symmetric, positive definite matrices |
|
|
16 | (1) |
|
1.3.5 Linear dependence and vector spaces |
|
|
17 | (1) |
|
1.4 Eigenvalues and eigenvectors |
|
|
18 | (3) |
|
1.5 Singular value decomposition |
|
|
21 | (2) |
|
1.6 Finding minima and maxima |
|
|
23 | (9) |
|
|
32 | (3) |
2 Image Statistics |
|
35 | (50) |
|
|
35 | (12) |
|
2.1.1 Discrete random variables |
|
|
36 | (1) |
|
2.1.2 Continuous random variables |
|
|
37 | (3) |
|
|
40 | (2) |
|
2.1.4 The normal distribution |
|
|
42 | (3) |
|
2.1.5 The gamma distribution and its derivatives |
|
|
45 | (2) |
|
|
47 | (6) |
|
|
47 | (3) |
|
2.2.2 Sample distributions and interval estimators |
|
|
50 | (3) |
|
2.3 Multivariate distributions |
|
|
53 | (8) |
|
2.3.1 Vector sample functions and the data matrix |
|
|
54 | (1) |
|
|
55 | (4) |
|
2.3.3 Real and complex multivariate sample distributions |
|
|
59 | (2) |
|
2.4 Bayes' Theorem, likelihood and classification |
|
|
61 | (3) |
|
|
64 | (5) |
|
2.6 Ordinary linear regression |
|
|
69 | (7) |
|
2.6.1 One independent variable |
|
|
69 | (2) |
|
2.6.2 Coefficient of determination (R2) |
|
|
71 | (1) |
|
2.6.3 More than one independent variable |
|
|
72 | (2) |
|
2.6.4 Regularization, duality and the Gram matrix |
|
|
74 | (2) |
|
2.7 Entropy and information |
|
|
76 | (4) |
|
2.7.1 Kullback—Leibler divergence |
|
|
78 | (1) |
|
|
78 | (2) |
|
|
80 | (5) |
3 Transformations |
|
85 | (42) |
|
3.1 The discrete Fourier transform |
|
|
85 | (6) |
|
3.2 The discrete wavelet transform |
|
|
91 | (14) |
|
|
91 | (4) |
|
|
95 | (3) |
|
3.2.3 Multiresolution analysis |
|
|
98 | (7) |
|
|
105 | (6) |
|
3.3.1 Image compression and reconstruction |
|
|
107 | (1) |
|
|
108 | (2) |
|
|
110 | (1) |
|
3.4 Minimum noise fraction |
|
|
111 | (6) |
|
|
112 | (3) |
|
3.4.2 Minimum noise fraction in ENVI |
|
|
115 | (2) |
|
|
117 | (5) |
|
3.5.1 Maximum autocorrelation factor |
|
|
117 | (2) |
|
|
119 | (3) |
|
|
122 | (5) |
4 Filters, Kernels and Fields |
|
127 | (32) |
|
4.1 The Convolution Theorem |
|
|
127 | (5) |
|
|
132 | (3) |
|
4.3 Wavelets and filter banks |
|
|
135 | (11) |
|
4.3.1 One-dimensional arrays |
|
|
135 | (6) |
|
4.3.2 Two-dimensional arrays |
|
|
141 | (5) |
|
|
146 | (6) |
|
|
146 | (4) |
|
|
150 | (2) |
|
4.5 Gibbs—Markov random fields |
|
|
152 | (4) |
|
|
156 | (3) |
5 Image Enhancement and Correction |
|
159 | (72) |
|
5.1 Lookup tables and histogram functions |
|
|
159 | (2) |
|
5.2 High-pass spatial filtering and feature extraction |
|
|
161 | (15) |
|
|
161 | (2) |
|
5.2.2 Laplacian-of-Gaussian filter |
|
|
163 | (3) |
|
|
166 | (4) |
|
|
170 | (6) |
|
5.3 Panchromatic sharpening |
|
|
176 | (9) |
|
|
176 | (3) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (3) |
|
|
184 | (1) |
|
5.4 Radiometric correction of polarimetric SAR imagery |
|
|
185 | (11) |
|
|
185 | (3) |
|
|
188 | (3) |
|
|
191 | (5) |
|
5.5 Topographic correction |
|
|
196 | (16) |
|
5.5.1 Rotation, scaling and translation |
|
|
196 | (1) |
|
5.5.2 Imaging transformations |
|
|
197 | (2) |
|
5.5.3 Camera models and RFM approximations |
|
|
199 | (2) |
|
5.5.4 Stereo imaging and digital elevation models |
|
|
201 | (6) |
|
|
207 | (1) |
|
5.5.6 Illumination correction |
|
|
208 | (4) |
|
5.6 Image—image registration |
|
|
212 | (14) |
|
5.6.1 Frequency domain registration |
|
|
212 | (5) |
|
|
217 | (5) |
|
5.6.3 Re-sampling with ground control points |
|
|
222 | (4) |
|
|
226 | (5) |
6 Supervised Classification Part 1 |
|
231 | (54) |
|
6.1 Maximizing the a posteriori probability |
|
|
232 | (1) |
|
6.2 Training data and separability |
|
|
233 | (5) |
|
6.3 Maximum likelihood classification |
|
|
238 | (5) |
|
6.3.1 ENVI's maximum likelihood classifier |
|
|
239 | (2) |
|
6.3.2 A modified classifier for ENVI and a Python script |
|
|
241 | (2) |
|
6.4 Gaussian kernel classification |
|
|
243 | (6) |
|
|
249 | (17) |
|
6.5.1 The neural network classifier |
|
|
252 | (5) |
|
|
257 | (1) |
|
|
258 | (6) |
|
6.5.4 Overfitting and generalization |
|
|
264 | (2) |
|
6.6 Support vector machines |
|
|
266 | (14) |
|
6.6.1 Linearly separable classes |
|
|
267 | (5) |
|
6.6.2 Overlapping classes |
|
|
272 | (2) |
|
6.6.3 Solution with sequential minimal optimization |
|
|
274 | (1) |
|
|
275 | (2) |
|
6.6.5 Kernel substitution |
|
|
277 | (1) |
|
6.6.6 A modified SVM classifier |
|
|
278 | (2) |
|
|
280 | (5) |
7 Supervised Classification Part 2 |
|
285 | (38) |
|
|
285 | (3) |
|
|
286 | (1) |
|
7.1.2 Probabilistic label relaxation |
|
|
286 | (2) |
|
7.2 Evaluation and comparison of classification accuracy |
|
|
288 | (12) |
|
7.2.1 Accuracy assessment |
|
|
289 | (5) |
|
7.2.2 Cross-validation on the cloud |
|
|
294 | (2) |
|
|
296 | (4) |
|
|
300 | (5) |
|
7.4 Classification of polarimetric SAR imagery |
|
|
305 | (2) |
|
7.5 Hyperspectral image analysis |
|
|
307 | (13) |
|
7.5.1 Spectral mixture modeling |
|
|
307 | (3) |
|
7.5.2 Unconstrained linear unmixing |
|
|
310 | (1) |
|
7.5.3 Intrinsic end-members and pixel purity |
|
|
311 | (2) |
|
7.5.4 Anomaly detection: The RX algorithm |
|
|
313 | (2) |
|
7.5.5 Anomaly detection: The kernel RX algorithm |
|
|
315 | (5) |
|
|
320 | (3) |
8 Unsupervised Classification |
|
323 | (46) |
|
8.1 Simple cost functions |
|
|
324 | (2) |
|
8.2 Algorithms that minimize the simple cost functions |
|
|
326 | (13) |
|
8.2.1 K-means. clustering |
|
|
327 | (2) |
|
8.2.2 Kernel K-means clustering |
|
|
329 | (3) |
|
8.2.3 Extended K-means clustering |
|
|
332 | (3) |
|
8.2.4 Agglomerative hierarchical clustering |
|
|
335 | (2) |
|
8.2.5 Fuzzy K-means clustering |
|
|
337 | (2) |
|
8.3 Gaussian mixture clustering |
|
|
339 | (7) |
|
8.3.1 Expectation maximization |
|
|
340 | (3) |
|
8.3.2 Simulated annealing |
|
|
343 | (1) |
|
|
343 | (1) |
|
8.3.4 Implementation notes |
|
|
344 | (2) |
|
8.4 Including spatial information |
|
|
346 | (5) |
|
8.4.1 Multiresolution clustering |
|
|
346 | (2) |
|
|
348 | (3) |
|
|
351 | (2) |
|
8.6 The Kohonen self-organizing map |
|
|
353 | (4) |
|
|
357 | (6) |
|
8.7.1 Segmenting a classified image |
|
|
358 | (2) |
|
8.7.2 Object-based classification |
|
|
360 | (1) |
|
|
361 | (2) |
|
|
363 | (6) |
9 Change Detection |
|
369 | (46) |
|
|
370 | (1) |
|
9.2 Postclassification comparison |
|
|
371 | (1) |
|
9.3 Principal components analysis (PCA) |
|
|
371 | (6) |
|
|
374 | (2) |
|
|
376 | (1) |
|
9.4 Multivariate alteration detection (MAD) |
|
|
377 | (14) |
|
9.4.1 Canonical correlation analysis (CCA) |
|
|
379 | (2) |
|
9.4.2 Orthogonality properties |
|
|
381 | (3) |
|
|
384 | (1) |
|
9.4.4 Iteratively re-weighted MAD |
|
|
384 | (3) |
|
9.4.5 Correlation with the original observations |
|
|
387 | (1) |
|
|
387 | (4) |
|
|
391 | (1) |
|
|
391 | (4) |
|
9.6 Unsupervised change classification |
|
|
395 | (3) |
|
9.7 Change detection with polarimetric SAR imagery |
|
|
398 | (5) |
|
9.7.1 Single polarimetry: The gamma distribution |
|
|
398 | (2) |
|
9.7.2 Quad polarimetry: The complex Wishart distribution |
|
|
400 | (3) |
|
9.8 Radiometric normalization of multispectral imagery |
|
|
403 | (8) |
|
9.8.1 Scatterplot matching |
|
|
404 | (2) |
|
9.8.2 IR-MAD normalization |
|
|
406 | (5) |
|
|
411 | (4) |
A Mathematical Tools |
|
415 | (14) |
|
A.1 Cholesky decomposition |
|
|
415 | (2) |
|
A.2 Vector and inner product spaces |
|
|
417 | (1) |
|
A.3 Complex numbers, vectors and matrices |
|
|
418 | (2) |
|
A.4 Least squares procedures |
|
|
420 | (5) |
|
A.4.1 Recursive linear regression |
|
|
420 | (2) |
|
A.4.2 Orthogonal linear regression |
|
|
422 | (3) |
|
|
425 | (4) |
B Efficient Neural Network Training Algorithms |
|
429 | (24) |
|
|
429 | (5) |
|
|
430 | (3) |
|
B.1.2 Calculating the, Hessian |
|
|
433 | (1) |
|
B.2 Scaled conjugate gradient training |
|
|
434 | (10) |
|
B.2.1 Conjugate directions |
|
|
434 | (3) |
|
B.2.2 Minimizing a quadratic function |
|
|
437 | (3) |
|
|
440 | (4) |
|
B.3 Kalman filter training |
|
|
444 | (8) |
|
|
444 | (2) |
|
|
446 | (6) |
|
B.4 A neural network classifier with hybrid training |
|
|
452 | (1) |
C ENVI Extensions in IDL |
|
453 | (18) |
|
|
453 | (1) |
|
|
454 | (17) |
|
C.2.1 ENVI extensions for Chapter 4 |
|
|
455 | (1) |
|
C.2.2 ENVI extensions for Chapter 5 |
|
|
455 | (5) |
|
C.2.3 ENVI extensions for Chapter 6 |
|
|
460 | (1) |
|
C.2.4 ENVI extensions for Chapter 7 |
|
|
461 | (2) |
|
C.2.5 ENVI extensions for Chapter 8 |
|
|
463 | (3) |
|
C.2.6 ENVI extensions for Chapter 9 |
|
|
466 | (5) |
D Python Scripts |
|
471 | (10) |
|
|
471 | (2) |
|
|
471 | (1) |
|
|
472 | (1) |
|
|
473 | (8) |
|
|
473 | (1) |
|
D.2.2 Scripts for Chapter 1 |
|
|
473 | (1) |
|
D.2.3 Scripts for Chapter 4 |
|
|
474 | (1) |
|
D.2.4 Scripts for Chapter 5 |
|
|
474 | (2) |
|
D.2.5 Scripts for Chapter 6 |
|
|
476 | (1) |
|
D.2.6 Scripts for Chapter 7 |
|
|
477 | (1) |
|
D.2.7 Scripts for Chapter 8 |
|
|
478 | (1) |
|
D.2.8 Scripts for Chapter 9 |
|
|
479 | (2) |
Mathematical Notation |
|
481 | (2) |
References |
|
483 | (12) |
Index |
|
495 | |