|
|
1 | (12) |
|
1.1 Modeling Natural Images |
|
|
1 | (1) |
|
1.2 Natural Image Statistics |
|
|
1 | (2) |
|
1.3 Sparseness in Biological Vision |
|
|
3 | (2) |
|
1.4 The Generative Model for Sparse Coding |
|
|
5 | (1) |
|
1.5 Sparse Models for Image Reconstruction |
|
|
6 | (3) |
|
|
6 | (1) |
|
1.5.2 Example Applications |
|
|
7 | (2) |
|
1.6 Sparse Models for Recognition |
|
|
9 | (4) |
|
1.6.1 Discriminative Dictionaries |
|
|
10 | (1) |
|
1.6.2 Bag of Words and its Generalizations |
|
|
11 | (1) |
|
1.6.3 Dictionary Design with Graph Embedding Constraints |
|
|
12 | (1) |
|
1.6.4 Kernel Sparse Methods |
|
|
12 | (1) |
|
|
13 | (16) |
|
2.1 The Sparsity Regularization |
|
|
13 | (4) |
|
2.1.1 Other Sparsity Regularizations |
|
|
14 | (2) |
|
2.1.2 Non-Negative Sparse Representations |
|
|
16 | (1) |
|
2.2 Geometrical Interpretation |
|
|
17 | (1) |
|
2.3 Uniqueness of l0 and its Equivalence to the l1 Solution |
|
|
17 | (3) |
|
|
20 | (1) |
|
2.4 Numerical Methods for Sparse Coding |
|
|
20 | (9) |
|
2.4.1 Optimality conditions |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.4.3 Greedy Pursuit Methods |
|
|
23 | (3) |
|
2.4.4 Feature-Sign Search |
|
|
26 | (2) |
|
2.4.5 Iterated Shrinkage Methods |
|
|
28 | (1) |
|
3 Dictionary Learning: Theory and Algorithms |
|
|
29 | (26) |
|
3.1 Dictionary Learning and Clustering |
|
|
31 | (2) |
|
3.1.1 Clustering Procedures |
|
|
31 | (1) |
|
3.1.2 Probabilistic Formulation |
|
|
32 | (1) |
|
|
33 | (17) |
|
3.2.1 Method of Optimal Directions |
|
|
33 | (1) |
|
|
34 | (2) |
|
3.2.3 Multilevel Dictionaries |
|
|
36 | (5) |
|
3.2.4 Online Dictionary Learning |
|
|
41 | (1) |
|
3.2.5 Learning Structured Sparse Models |
|
|
42 | (4) |
|
3.2.6 Sparse Coding Using Examples |
|
|
46 | (4) |
|
3.3 Stability and Generalizability of Learned Dictionaries |
|
|
50 | (5) |
|
3.3.1 Empirical Risk Minimization |
|
|
51 | (1) |
|
3.3.2 An Example Case: Multilevel Dictionary Learning |
|
|
52 | (3) |
|
|
55 | (12) |
|
4.1 Measurement Matrix Design |
|
|
56 | (3) |
|
4.1.1 The Restricted Isometry Property |
|
|
56 | (2) |
|
4.1.2 Geometric Interpretation |
|
|
58 | (1) |
|
4.1.3 Optimized Measurements |
|
|
58 | (1) |
|
4.2 Compressive Sensing of Natural Images |
|
|
59 | (1) |
|
4.3 Video Compressive Sensing |
|
|
60 | (7) |
|
4.3.1 Frame-by-Frame Compressive Recovery |
|
|
61 | (1) |
|
4.3.2 Model-Based Video Compressive Sensing |
|
|
62 | (1) |
|
4.3.3 Direct Feature Extraction from Compressed Videos |
|
|
63 | (4) |
|
5 Sparse Models in Recognition |
|
|
67 | (24) |
|
5.1 A Simple Classification Setup |
|
|
67 | (4) |
|
5.2 Discriminative Dictionary Learning |
|
|
71 | (1) |
|
5.3 Sparse-Coding-Based Subspace Identification |
|
|
72 | (1) |
|
5.4 Using Unlabeled Data in Supervised Learning |
|
|
73 | (1) |
|
5.5 Generalizing Spatial Pyramids |
|
|
74 | (4) |
|
5.5.1 Supervised Dictionary Optimization |
|
|
77 | (1) |
|
5.6 Locality in Sparse Models |
|
|
78 | (2) |
|
5.6.1 Local Sparse Coding |
|
|
78 | (1) |
|
|
79 | (1) |
|
5.7 Incorporating Graph Embedding Constraints |
|
|
80 | (3) |
|
5.7.1 Laplacian Sparse Coding |
|
|
81 | (1) |
|
5.7.2 Local Discriminant Sparse Coding |
|
|
81 | (2) |
|
5.8 Kernel Methods in Sparse Coding |
|
|
83 | (8) |
|
5.8.1 Kernel Sparse Representations |
|
|
84 | (1) |
|
5.8.2 Kernel Dictionaries in Representation and Discrimination |
|
|
85 | (2) |
|
5.8.3 Combining Diverse Features |
|
|
87 | (2) |
|
5.8.4 Application: Tumor Identification |
|
|
89 | (2) |
Bibliography |
|
91 | (14) |
Authors' Biographies |
|
105 | |