Muutke küpsiste eelistusi

Imaging Cellular and Molecular Biological Functions Softcover reprint of hardcover 1st ed. 2007 [Pehme köide]

  • Formaat: Paperback / softback, 450 pages, kõrgus x laius: 235x155 mm, kaal: 718 g, 82 Illustrations, color; 56 Illustrations, black and white; XXII, 450 p. 138 illus., 82 illus. in color., 1 Paperback / softback
  • Sari: Principles and Practice
  • Ilmumisaeg: 23-Nov-2010
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642090451
  • ISBN-13: 9783642090455
  • Pehme köide
  • Hind: 187,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 220,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 450 pages, kõrgus x laius: 235x155 mm, kaal: 718 g, 82 Illustrations, color; 56 Illustrations, black and white; XXII, 450 p. 138 illus., 82 illus. in color., 1 Paperback / softback
  • Sari: Principles and Practice
  • Ilmumisaeg: 23-Nov-2010
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642090451
  • ISBN-13: 9783642090455
Imaging Cellular and Molecular Biological Function provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. The chapter content ranges from the basic through to complex overview of method and protocols, and there is also practical and detailed how-to content on important, but rarely addressed topics. This first edition features all-colour-plate chapters.



The philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions.

Arvustused

From the reviews:









"Imaging Cellular and Molecular Biological Functions presents essays by experts in the field for scientists and students who are interested in all aspects of imaging, including development and applications." (Spencer L. Shorte and Friedrich Frischknecht, Biophotonics International, April, 2008)



"This 450-page, color-illustrated book summarizes the latest technology. It is clearly structured in three sections. We can recommend this book to young researchers and imaging specialists thanks not only to the numerous illustrations that help clarify the text, but also to the extensive collection of sources relating to each chapter." (Microscopy and Imaging, November, 2008)

Preface v
I Considerations for Routine Imaging
1 Entering the Portal: Understanding the Digital Image Recorded Through a Microscope
3(42)
Kristin L. Hazelwood
Scott G. Olenych
John D. Griffin
Judith A. Cathcart
Michael W. Davidson
1.1 Introduction
3(1)
1.2 Historical Perspective
4(1)
1.3 Digital Image Acquisition: Analog to Digital Conversion
4(2)
1.4 Spatial Resolution in Digital Images
6(2)
1.5 The Contrast Transfer Function
8(2)
1.6 Image Brightness and Bit Depth
10(1)
1.7 Image Histograms
11(1)
1.8 Fundamental Properties of CCD Cameras
12(4)
1.9 CCD Enhancing Technologies
16(1)
1.10 CCD Performance Measures
17(4)
1.11 Multidimensional Imaging
21(3)
1.12 The Point-Spread Function
24(4)
1.13 Digital Image Display and Storage
28(1)
1.14 Imaging Modes in Optical Microscopy
29(10)
1.15 Summary
39(2)
1.16 Internet Resources
41(4)
References
41(4)
2 Quantitative Biological Image Analysis
45(26)
Erik Meijering
Gert van Cappellen
2.1 Introduction
45(1)
2.2 Definitions and Perspectives
46(2)
2.3 Image Preprocessing
48(9)
2.3.1 Image Intensity Transformation
50(1)
2.3.2 Local Image Filtering
50(3)
2.3.3 Geometrical Image Transformation
53(2)
2.3.4 Image Restoration
55(2)
2.4 Advanced Processing for Image Analysis
57(6)
2.4.1 Colocalization Analysis
58(1)
2.4.2 Neuron Tracing and Quantification
58(2)
2.4.3 Particle Detection and Tracking
60(2)
2.4.4 Cell Segmentation and Tracking
62(1)
2.5 Higher-Dimensional Data Visualization
63(3)
2.5.1 Volume Rendering
64(1)
2.5.2 Surface Rendering
64(2)
2.6 Software Tools and Development
66(5)
References
68(3)
3 The Open Microscopy Environment: A Collaborative Data Modeling and Software Development Project for Biological Image Informatics
71(22)
Jason R. Swedlow
3.1 Introduction
71(3)
3.1.1 WhatlsOME?
72(1)
3.1.2 Why OME -- What Is the Problem?
72(2)
3.2 OME Specifications and File Formats
74(3)
3.2.1 OME Data Model
74(2)
3.2.2 OME-XML, OME-TIFF and Bio-Formats
76(1)
3.3 OME Data Management and Analysis Software
77(13)
3.3.1 OME Server and Web User Interface
77(7)
3.3.2 OMERO Server, Client and Importer
84(5)
3.3.3 Developing Usable Tools for Imaging
89(1)
3.4 Conclusions and Future Directions
90(3)
References
90(3)
4 Design and Function of a Light-Microscopy Facility
93(24)
Kurt I. Anderson
Jeremy Sanderson
Jan Peychl
4.1 Introduction
93(2)
4.2 Users
95(1)
4.3 Staff
96(2)
4.3.1 Workplace Safety
96(1)
4.3.2 User Training
97(1)
4.3.3 Equipment Management
97(1)
4.4 Equipment
98(5)
4.4.1 Large Equipment
98(1)
4.4.2 Small Equipment
99(1)
4.4.3 Tools
100(1)
4.4.4 Imaging Facility Layout
100(3)
4.5 Organization
103(9)
4.5.1 Equipment-Booking Database
103(3)
4.5.2 Fee for Service
106(1)
4.5.3 Cost Matrix
107(4)
4.5.4 Advisory Committees
111(1)
4.6 Summary
112(5)
References
113(4)
II Advanced Methods and Concepts
5 Quantitative Colocalisation Imaging: Concepts, Measurements, and Pitfalls
117(40)
Martin Oheim
Dongdong Li
5.1 Introduction
117(20)
5.1.1 One Fluorophore, One Image?
124(11)
5.1.2 A Practical Example of Dual-Band Detection
135(2)
5.2 Quantifying Colocalisation
137(13)
5.2.1 `Colour Merging'
137(2)
5.2.2 Pixel-Based Techniques
139(8)
5.2.3 Object-Based Techniques
147(3)
5.3 Conclusions
150(7)
References
151(6)
6 Quantitative FRET Microscopy of Live Cells
157(26)
Adam D. Hoppe
6.1 Introduction
157(1)
6.2 Introductory Physics of FRET
158(2)
6.3 Manifestations of FRET in Fluorescence Signals
160(3)
6.3.1 Spectral Change (Sensitized Emission)
160(1)
6.3.2 Fluorescence Lifetime
161(1)
6.3.3 Polarization
162(1)
6.3.4 Accelerated Photobleaching
162(1)
6.4 Molecular Interaction Mechanisms That Can Be Observed by FRET
163(2)
6.4.1 Conformational Change
164(1)
6.4.2 Molecular Association
164(1)
6.4.3 Molecular Assembly
164(1)
6.5 Measuring Fluorescence Signals in the Microscope
165(2)
6.6 Methods for FRET Microscopy
167(8)
6.6.1 Photobleaching Approaches
168(2)
6.6.2 Sensitized Emission
170(3)
6.6.3 Spectral Fingerprinting and Matrix Notation for FRET
173(1)
6.6.4 Polarization
174(1)
6.7 Fluorescence Lifetime Imaging Microscopy for FRET
175(1)
6.8 Data Display and Interpretation
176(1)
6.9 FRET-Based Biosensors
177(1)
6.10 FRET Microscopy for Analyzing Interaction Networks in Live Cells
178(2)
6.11 Conclusion
180(3)
References
180(3)
7 Fluorescence Photobleaching and Fluorescence Correlation Spectroscopy: Two Complementary Technologies To Study Molecular Dynamics in Living Cells
183(52)
Make Wachsmuth
Klaus Weisshart
7.1 Introduction
183(6)
7.1.1 FRAP and Other Photobleaching Methods
184(2)
7.1.2 FCS and Other Fluctuation Analysis Methods
186(1)
7.1.3 Comparing and Combining Techniques
187(2)
7.2 Fundamentals
189(7)
7.2.1 Fluorescent Labelling
189(2)
7.2.2 Microscope Setup
191(2)
7.2.3 Diffusion and Binding in Living Cells
193(1)
7.2.4 Fluorescence, Blinking, and Photobleaching
194(1)
7.2.5 Two-Photon Excitation
195(1)
7.3 How To Perform a FRAP Experiment
196(9)
7.3.1 The Principle of Imaging-Based FRAP
196(1)
7.3.2 Choosing and Optimising the Experimental Parameters
197(3)
7.3.3 Quantitative Evaluation
200(3)
7.3.4 Controls and Potential Artefacts
203(2)
7.4 How To Perform an FCS Experiment
205(12)
7.4.1 The Principle of FCS
205(3)
7.4.2 Instrument Alignment and Calibration
208(4)
7.4.3 Setting Up an Experiment
212(1)
7.4.4 Types of Applications
213(2)
7.4.5 Potential Artefacts
215(2)
7.5 How To Perform a CP Experiment
217(4)
7.5.1 The Principle of CP
217(1)
7.5.2 Choosing and Optimising the Experimental Parameters
218(1)
7.5.3 Quantitative Evaluation
219(1)
7.5.4 Controls and Potential Artefacts
220(1)
7.6 Quantitative Treatment
221(6)
7.6.1 Fluorescence Recovery After Photobleaching
221(2)
7.6.2 Fluorescence Correlation Spectroscopy
223(3)
7.6.3 Continuous Fluorescence Photobleaching
226(1)
7.7 Conclusion
227(8)
References
227(8)
8 Single Fluorescent Molecule Tracking in Live Cells
235(30)
Ghislain G. Cabal
Jost Enninga
Musa M. Mhlanga
8.1 Introduction
235(1)
8.2 Tracking of Single Chromosomal Loci
236(11)
8.2.1 General Remarks
236(1)
8.2.2 In Vivo Single Loci Tagging via Operator/Repressor Recognition
237(1)
8.2.3 The Design of Strains Containing TetO Repeats and Expressing TetR-GFP
238(6)
8.2.4 In Vivo Microscopy for Visualization of Single Tagged Chromosomal Loci
244(2)
8.2.5 Limits and Extension of Operator/Repressor Single Loci Tagging System
246(1)
8.3 Single-Molecule Tracking of mRNA
247(6)
8.3.1 Overview
247(1)
8.3.2 The MS2-GFP System
247(1)
8.3.3 The Molecular Beacon System
248(2)
8.3.4 Setting Up the Molecular Beacon System for the Detection of mRNA
250(1)
8.3.5 Ensuring the Observed Fluorescent Particles in Vivo Consist of Single Molecules of mRNA
251(2)
8.4 Single-Particle Tracking for Membrane Proteins
253(5)
8.4.1 Overview
253(1)
8.4.2 Quantum Dots As Fluorescent Labels for Biological Samples
254(1)
8.4.3 Functionalizing Quantum Dots To Label Specific Proteins
255(2)
8.4.4 Tracking the Glycin Receptor 1 at the Synaptic Cleft Using Quantum Dots
257(1)
8.5 Tracking Analysis and Image Processing of Data from Particle Tracking in Living Cells
258(1)
8.6 Conclusion
258(1)
8.7 Protocols for Laboratory Use
259(6)
8.7.1 Protocol: Single-Molecule Tracking of Chromosomal Loci in Yeast
259(1)
8.7.2 Protocol: Single-Molecule Tracking of mRNA -- Experiment Using Molecular Beacons
259(2)
References
261(4)
9 From Live-Cell Microscopy to Molecular Mechanisms: Deciphering the Functions of Kinetochore Proteins
265(24)
Khuloud Jaqaman
Jonas F. Dorn
Gaudenz Danuser
9.1 Introduction
265(3)
9.2 Biological Problem: Deciphering the Functions of Kinetochore Proteins
268(1)
9.3 Experimental Design
269(4)
9.4 Extraction of Dynamics from Images
273(3)
9.4.1 Mixture-Model Fitting
274(1)
9.4.2 Tag Tracking
275(1)
9.4.3 Multitemplate Matching
275(1)
9.5 Characterization of Dynamics
276(6)
9.5.1 Confined Brownian Motion Model
277(1)
9.5.2 Simple Microtubule Dynamic Instability Model
278(1)
9.5.3 Autoregressive Moving Average Model
279(1)
9.5.4 Descriptor Sensitivity and Completeness
280(2)
9.6 Quantitative Genetics of the Yeast Kinetochore
282(2)
9.7 Conclusion
284(5)
References
284(5)
III Cutting Edge Applications & Utilities
10 Towards Imaging the Dynamics of Protein Signalling
289(24)
Lars Kaestner
Peter Lipp
10.1 Spatiotemporal Aspects of Protein Signalling Dynamics
289(1)
10.2 How To Be Fast While Maintaining the Resolution
290(9)
10.3 How To Make Proteins Visible
299(4)
10.4 Concepts To Image Protein Dynamics
303(2)
10.5 Concepts To Image Protein-Protein Interactions
305(4)
10.6 Concepts To Image Biochemistry with Fluorescent Proteins
309(4)
References
311(2)
11 New Technologies for Imaging and Analysis of Individual Microbial Cells
313(32)
Byron F. Brehm-Stecher
11.1 Introduction
313(1)
11.2 Live-Cell Imaging
314(1)
11.3 Imaging Infection
315(3)
11.4 Imaging Single Molecules (Within Single Cells)
318(1)
11.5 Measuring Discrete Cell Properties and Processes
319(2)
11.6 "Wetware"
321(2)
11.7 Hardware and Applications
323(3)
11.7.1 Nonphotonic Microscopies
323(1)
11.7.2 Image Analysis
324(1)
11.7.3 Spectroscopic Methods
325(1)
11.8 Fluorescence Correlation Spectroscopy
326(4)
11.9 A Picture is Worth a Thousand Dots -- New Developments in Flow Cytometry
330(4)
11.10 Strength in Numbers -- Highly Parallel Analysis Using Cellular Arrays
334(1)
11.11 Nontactile Manipulation of Individual Cells and "Wall-less Test Tubes"
335(2)
11.12 Conclusions
337(8)
References
338(7)
12 Imaging Parasites in Vivo
345(20)
Rogerio Amino
Blandine Franke-Fayard
Chris Janse
Andrew Waters
Robert Menard
Freddy Frischknecht
12.1 Introduction
345(1)
12.2 The Life Cycle of Malaria Parasites
346(2)
12.3 A Very Brief History of Light Microscopy and Malaria Parasites
348(1)
12.4 In Vivo Imaging of Luminescent Parasites
349(1)
12.5 In Vivo Imaging of Fluorescent Parasites
350(1)
12.6 Imaging Malaria Parasites in the Mosquito
351(3)
12.7 Imaging Malaria Parasites in the Mammalian Host
354(4)
12.8 Towards Molecular Imaging in Vivo
358(1)
12.9 A Look at Other Parasites
359(1)
12.10 Conclusion
360(5)
References
360(5)
13 Computer-Assisted Systems for Dynamic 3D Reconstruction and Motion Analysis of Living Cells
365(20)
David R. Soli
Edward Voss
Deborah Wessels
Spencer Kuhl
13.1 Introduction
365(1)
13.2 Approaches to 3D Reconstruction and Motion Analysis
366(2)
13.3 Obtaining Optical Sections for 3D Reconstruction
368(1)
13.4 Outlining
368(5)
13.5 Reconstructing 3D Faceted Images and Internal Architecture
373(1)
13.6 Quantitative Analyses of Behavior
373(2)
13.7 3D-DIASemb
375(2)
13.8 Resolving Filopodia
377(3)
13.9 The Combined Use of LSCM and 3D-DIAS
380(1)
13.10 Reasons for 3D Dynamic Image Reconstruction Analysis
381(4)
References
382(3)
14 High-Throughput/High-Content Automated Image Acquisition and Analysis
385(22)
Gabriele Gradl
Chris Hinnah
Achim Kirsch
Jurgen Muller
Dana Nojima
Julian Wolcke
14.1 The Driving Forces for High-Throughput/High-Content Automated Imaging
385(1)
14.2 Confocal Imaging in High Throughput -- The Principles Available
386(3)
14.3 Resolution and Sensitivity
389(3)
14.4 Measurements
392(1)
14.5 Where Is the Signal and How To Focus?
393(1)
14.6 Plates and Lenses
394(1)
14.7 Image Analysis
395(4)
14.8 Throughput: How To Acquire and Analyze Data Rapidly
399(2)
14.9 Screening Examples
401(6)
References
404(3)
15 Cognition Network Technology -- A Novel Multimodal Image Analysis Technique for Automatic Identification and Quantification of Biological Image Contents
407(16)
Maria Athelogou
Gunter Schmidt
Arno Schape
Martin Baatz
Gerd Binnig
15.1 Introduction
407(2)
15.2 Cognition Network Technology and Cognition Network Language
409(12)
15.2.1 Cognition Networks
409(1)
15.2.2 Input Data and Image Object Hierarchy
410(1)
15.2.3 Features and Variables
411(2)
15.2.4 Classes and Classification
413(1)
15.2.5 Processes
414(1)
15.2.6 Domains
414(1)
15.2.7 Using CNT-CNL for Image Analysis
415(2)
15.2.8 Application Notes
417(4)
15.3 Discussion
421(2)
References
421(2)
16 High-Content Phenotypic Cell-Based Assays
423(20)
Eugenio Fava
Eberhard Krausz
Rico Barsacchi
Ivan Baines
Marino Zerial
16.1 A New Tool for Biological Research and Drug Discovery
423(1)
16.2 What Is High-Content Screening and How Can Biologists Use It?
424(1)
16.3 Assay Design: First Think, Then Act
425(1)
16.4 Assay Optimization
426(1)
16.5 Cell Culture
426(2)
16.6 Cell Vessels
428(1)
16.7 Cellular Imaging
428(2)
16.8 Autotluorescence
430(1)
16.9 Image Analysis
431(1)
16.10 Transfection Optimization for RNAi-Based Assays
431(1)
16.11 Escapers and Silencing Efficiency
432(3)
16.12 Toxicity
435(1)
16.13 Off-Target or Unspecific Reactions
436(1)
16.14 Assay Quality
437(1)
16.15 Assay Validation
438(2)
16.16 Conclusion and Outlook
440(3)
References
440(3)
Index 443