Preface |
|
xiii | |
Imaging sensor technologies and applications |
|
xvii | |
About the editor |
|
xix | |
1 X-ray beam imaging sensors |
|
1 | (32) |
|
|
|
1 | (1) |
|
|
1 | (2) |
|
1.2 Non-destructive X-ray beam monitoring |
|
|
3 | (3) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (6) |
|
1.3.1 Quadrant photodiode |
|
|
7 | (1) |
|
1.3.2 Lateral effect photodiode |
|
|
8 | (1) |
|
1.3.3 Image (pixel array) sensors |
|
|
8 | (4) |
|
|
12 | (4) |
|
1.5 Pinhole/coded aperture X-ray camera |
|
|
16 | (6) |
|
|
16 | (2) |
|
|
18 | (2) |
|
|
20 | (2) |
|
1.6 System implementation and description |
|
|
22 | (2) |
|
1.7 Results and discussion |
|
|
24 | (4) |
|
|
28 | (1) |
|
|
28 | (5) |
2 Optical scattering sensors |
|
33 | (38) |
|
|
|
|
|
|
33 | (1) |
|
|
34 | (1) |
|
2.2 Static light scattering |
|
|
34 | (9) |
|
|
34 | (4) |
|
|
38 | (5) |
|
2.3 Dynamic light scattering |
|
|
43 | (5) |
|
|
43 | (1) |
|
2.3.2 Particle sizing system based on DLS |
|
|
44 | (4) |
|
2.4 RGB multi-wavelengths light extinction |
|
|
48 | (10) |
|
2.4.1 Measuring fine particle size with RGB three-wavelength bands light extinction |
|
|
48 | (1) |
|
2.4.2 Measurement principle of RGB three-wavelength bands light extinction method |
|
|
49 | (8) |
|
2.4.3 Experimental verification |
|
|
57 | (1) |
|
|
58 | (1) |
|
2.5 Ultrasonic scattering |
|
|
58 | (6) |
|
2.5.1 Principle of ultrasonic scattering |
|
|
59 | (1) |
|
2.5.2 Data inversion for particle sizing |
|
|
60 | (2) |
|
2.5.3 Measurement system for ultrasonic attenuation |
|
|
62 | (2) |
|
|
64 | (1) |
|
|
64 | (7) |
3 Smart visual sensors in robotic systems |
|
71 | (36) |
|
|
|
|
71 | (1) |
|
|
71 | (3) |
|
3.2 Camera models and calibration |
|
|
74 | (3) |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
77 | (3) |
|
3.3.1 Position-based visual servoing |
|
|
78 | (1) |
|
3.3.2 Image-based visual servoing |
|
|
79 | (1) |
|
3.3.3 2-1/2-D visual servoing |
|
|
80 | (1) |
|
3.4 Visual servoing control |
|
|
80 | (17) |
|
|
80 | (3) |
|
3.4.2 KSOM-based redundancy preserving network |
|
|
83 | (3) |
|
3.4.3 Inverse-forward adaptive scheme with a KSOM-based hint generator |
|
|
86 | (4) |
|
3.4.4 Inverse Jacobian matrix estimation using Kohonen's self-organising map |
|
|
90 | (1) |
|
3.4.5 Near-optimal controllers for input affine nonlinear systems using single network adaptive critic |
|
|
91 | (2) |
|
3.4.6 A single network adaptive critic-based redundancy resolution scheme for redundant manipulators |
|
|
93 | (1) |
|
3.4.7 Reinforcement learning-based optimal redundancy resolution directly from the vision space |
|
|
94 | (3) |
|
3.5 Autonomous ground robot |
|
|
97 | (3) |
|
3.5.1 Experimental setup and results |
|
|
98 | (2) |
|
3.6 Implementation issues |
|
|
100 | (1) |
|
|
100 | (1) |
|
|
100 | (7) |
4 CCD and CMOS sensors and their applications in flame measurement |
|
107 | (46) |
|
|
|
107 | (1) |
|
|
108 | (1) |
|
4.2 CCD and CMOS imaging sensors |
|
|
108 | (19) |
|
|
109 | (11) |
|
4.2.2 CMOS imaging sensors |
|
|
120 | (2) |
|
4.2.3 Special imaging sensors |
|
|
122 | (3) |
|
|
125 | (1) |
|
4.2.5 Sizes of imaging sensor and lens |
|
|
126 | (1) |
|
|
127 | (1) |
|
4.3 Flame imaging and measurement |
|
|
127 | (21) |
|
|
127 | (1) |
|
4.3.2 Flame visualisation and measurement |
|
|
128 | (2) |
|
|
130 | (10) |
|
|
140 | (7) |
|
4.3.5 Flame chemiluminescence imaging |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (4) |
5 Tunable diode Laser absorption spectroscopy (TDLAS) sensors |
|
153 | (40) |
|
|
|
|
153 | (1) |
|
|
154 | (1) |
|
|
155 | (9) |
|
5.2.1 Principles for TDLAS sensors |
|
|
157 | (3) |
|
5.2.2 Laser control and emitting unit |
|
|
160 | (1) |
|
5.2.3 Data acquisition unit |
|
|
161 | (1) |
|
5.2.4 TDLAS tomographic system |
|
|
162 | (2) |
|
5.3 Total absorbance extraction and on-chip implementation |
|
|
164 | (12) |
|
|
165 | (1) |
|
5.3.2 On-chip implementation of DAS method |
|
|
166 | (4) |
|
|
170 | (3) |
|
5.3.4 On-chip implementation of WMS method |
|
|
173 | (3) |
|
5.4 Calibration of single path TDLAS sensor |
|
|
176 | (6) |
|
5.4.1 Performance evaluation |
|
|
177 | (2) |
|
5.4.2 Performance evaluation at high temperatures |
|
|
179 | (3) |
|
5.5 Image reconstruction for TDLAS tomography |
|
|
182 | (2) |
|
|
182 | (1) |
|
5.5.2 Tikhonov regularisation method |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (5) |
|
5.6.1 Case study 1: Acoustic excited flame monitoring |
|
|
184 | (3) |
|
5.6.2 Case study 2: Process monitoring for high-temperature wind tunnel |
|
|
187 | (2) |
|
5.7 Prospects and future work |
|
|
189 | (1) |
|
|
189 | (4) |
6 Light detection and ranging (LiDAR) sensors |
|
193 | (34) |
|
|
|
|
193 | (1) |
|
|
194 | (1) |
|
|
195 | (12) |
|
|
195 | (1) |
|
|
196 | (2) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (5) |
|
|
205 | (2) |
|
6.3 TLS errors and self-calibration |
|
|
207 | (12) |
|
|
207 | (2) |
|
6.3.2 Self-calibration methods |
|
|
209 | (3) |
|
6.3.3 Feature points extraction |
|
|
212 | (2) |
|
6.3.4 Self-calibration results |
|
|
214 | (1) |
|
|
215 | (4) |
|
6.4 TLS applications on civil and agriculture |
|
|
219 | (4) |
|
6.4.1 Tunnel seepage detection |
|
|
219 | (1) |
|
6.4.2 Individual maize plant extraction |
|
|
219 | (2) |
|
6.4.3 Registration for urban structures |
|
|
221 | (2) |
|
|
223 | (1) |
|
|
223 | (4) |
7 Microwave imaging sensors |
|
227 | (26) |
|
|
|
|
|
227 | (1) |
|
|
227 | (3) |
|
7.2 Microwave imaging systems |
|
|
230 | (4) |
|
7.3 Antennas for microwave imaging |
|
|
234 | (11) |
|
7.3.1 Monopole and dipole antennas |
|
|
235 | (3) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
7.3.5 Tapered slot and Vivaldi antennas |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
244 | (1) |
|
7.3.9 Other sensor elements |
|
|
245 | (1) |
|
|
245 | (1) |
|
|
245 | (8) |
8 Electro-magnetic imaging with ultra-wideband (UWB) sensors |
|
253 | (44) |
|
|
|
253 | (1) |
|
|
253 | (1) |
|
|
254 | (9) |
|
|
255 | (3) |
|
|
258 | (5) |
|
8.3 Sensor and instrumentation system |
|
|
263 | (16) |
|
|
263 | (12) |
|
8.3.2 Data acquisition system |
|
|
275 | (4) |
|
8.4 Results and discussion |
|
|
279 | (13) |
|
8.4.1 Limited view geometry |
|
|
279 | (13) |
|
|
292 | (1) |
|
|
293 | (4) |
9 Synthetic aperture radar (SAR) |
|
297 | (34) |
|
|
|
|
|
297 | (1) |
|
|
298 | (1) |
|
9.2 Principle of synthetic aperture |
|
|
298 | (6) |
|
|
302 | (1) |
|
|
302 | (2) |
|
9.3 Imaging principle and range Doppler algorithm |
|
|
304 | (8) |
|
9.3.1 Basic principles of SAR imaging |
|
|
305 | (2) |
|
9.3.2 Range Doppler algorithm |
|
|
307 | (5) |
|
|
312 | (4) |
|
9.4.1 Multi-mode unified signal model |
|
|
313 | (1) |
|
|
314 | (2) |
|
9.5 Multi-mode unified imaging method |
|
|
316 | (10) |
|
9.5.1 Fractional Fourier transformation (FrFT) |
|
|
316 | (1) |
|
9.5.2 Algorithm description |
|
|
317 | (2) |
|
9.5.3 Applications for Sliding Spotlight and TOPS SAR |
|
|
319 | (5) |
|
9.5.4 Applied to Stripmap and Spotlight SAR |
|
|
324 | (1) |
|
|
324 | (2) |
|
|
326 | (1) |
|
|
327 | (4) |
10 Electrical resistance tomography (ERT) sensors and applications |
|
331 | (36) |
|
|
|
331 | (1) |
|
|
332 | (3) |
|
10.1.1 Forward problem of ERT |
|
|
332 | (2) |
|
10.1.2 Inverse problem of ERT |
|
|
334 | (1) |
|
10.2 Optimised design of ERT sensor |
|
|
335 | (7) |
|
10.2.1 Optimisation index of ERT sensor |
|
|
338 | (1) |
|
10.2.2 Excitation and measurement strategies |
|
|
339 | (3) |
|
10.3 Data acquisition system |
|
|
342 | (8) |
|
10.3.1 Sinewave generator |
|
|
343 | (2) |
|
10.3.2 Signal conditioning circuits |
|
|
345 | (1) |
|
10.3.3 Voltage-controlled current source |
|
|
345 | (3) |
|
10.3.4 Differential amplifiers |
|
|
348 | (1) |
|
10.3.5 Signal conditioning circuit |
|
|
348 | (1) |
|
10.3.6 Digital demodulation |
|
|
349 | (1) |
|
10.4 Image reconstruction |
|
|
350 | (4) |
|
10.4.1 Sensitivity/Jacobian matrix-based methods |
|
|
351 | (3) |
|
|
354 | (8) |
|
10.5.1 Multi-phase flow measurement |
|
|
354 | (3) |
|
10.5.2 Volume fraction measurement of gas-liquid bubble column |
|
|
357 | (2) |
|
10.5.3 Fluidised bed reactor |
|
|
359 | (1) |
|
|
360 | (2) |
|
|
362 | (1) |
|
|
363 | (4) |
11 Electrical tomography for medical applications |
|
367 | (38) |
|
|
|
|
367 | (1) |
|
|
368 | (1) |
|
|
369 | (6) |
|
11.2.1 TUGEM measuring system |
|
|
370 | (1) |
|
11.2.2 Duke University's system |
|
|
370 | (1) |
|
11.2.3 Dartmouth EIT system |
|
|
370 | (3) |
|
11.2.4 Commercial EIT systems for breast cancer detection |
|
|
373 | (1) |
|
11.2.5 Wearable smart device-based EIT mammography |
|
|
374 | (1) |
|
11.3 Other cancer research: cervical, colorectal and prostates cancer |
|
|
375 | (2) |
|
|
375 | (1) |
|
|
376 | (1) |
|
|
376 | (1) |
|
|
377 | (6) |
|
11.5 Brain function imaging and neuroscience |
|
|
383 | (2) |
|
|
385 | (5) |
|
11.6.1 Endodontic therapy |
|
|
385 | (2) |
|
11.6.2 Revision total hip replacement |
|
|
387 | (3) |
|
|
390 | (1) |
|
|
390 | (15) |
12 Electromagnetic tomography (EMT) sensors |
|
405 | (24) |
|
|
|
405 | (1) |
|
|
405 | (3) |
|
12.2 Forward problem and sensitivity maps |
|
|
408 | (15) |
|
12.2.1 Analytical solution for calculating sensitivity maps |
|
|
408 | (3) |
|
12.2.2 Simulation with a custom edge-element FEM solver |
|
|
411 | (5) |
|
12.2.3 Simulation with a custom BEM solver |
|
|
416 | (6) |
|
12.2.4 Simulation with a commercial software |
|
|
422 | (1) |
|
12.3 MIT hardware system design |
|
|
423 | (1) |
|
12.4 Typical applications |
|
|
424 | (3) |
|
|
427 | (1) |
|
|
427 | (2) |
13 Micro-sensors for cell and blood imaging |
|
429 | (30) |
|
|
|
|
429 | (1) |
|
|
429 | (2) |
|
13.2 Micro-sensors with different structures |
|
|
431 | (1) |
|
13.3 Noise reduction methods for micro-sensors |
|
|
432 | (4) |
|
13.3.1 Noise from macro- to micro-sensors |
|
|
432 | (1) |
|
|
433 | (3) |
|
|
436 | (10) |
|
13.4.1 Micro-fluidic sensors |
|
|
436 | (1) |
|
13.4.2 Simulation of cell distribution |
|
|
437 | (3) |
|
13.4.3 Cell imaging experiments |
|
|
440 | (6) |
|
13.5 Blood flow measurement |
|
|
446 | (8) |
|
13.5.1 Experimental setup and method |
|
|
447 | (2) |
|
13.5.2 Experimental results |
|
|
449 | (5) |
|
|
454 | (1) |
|
|
455 | (4) |
14 Ultrasound imaging sensors |
|
459 | (36) |
|
|
|
|
|
459 | (1) |
|
|
459 | (1) |
|
|
460 | (11) |
|
14.2.1 Fundamentals of acoustic wave |
|
|
460 | (4) |
|
|
464 | (4) |
|
14.2.3 Reflection and scattering |
|
|
468 | (1) |
|
|
468 | (1) |
|
|
469 | (1) |
|
14.2.6 Nonlinearities in ultrasound imaging |
|
|
470 | (1) |
|
|
471 | (12) |
|
14.3.1 Piezoelectric ultrasound transducers |
|
|
471 | (6) |
|
14.3.2 Piezoelectric array |
|
|
477 | (2) |
|
14.3.3 Capacitive micro-machined ultrasound transducers |
|
|
479 | (1) |
|
14.3.4 Optical ultrasound sensors |
|
|
480 | (3) |
|
|
483 | (8) |
|
14.4.1 Ultrasound imaging system |
|
|
483 | (1) |
|
14.4.2 Amplitude mode (A-mode) ultrasound imaging |
|
|
484 | (1) |
|
14.4.3 Brightness mode (B-mode) ultrasound imaging |
|
|
485 | (1) |
|
14.4.4 Motion mode (M-mode) ultrasound imaging |
|
|
486 | (1) |
|
14.4.5 Intravascular ultrasound (IVUS) imaging |
|
|
487 | (2) |
|
14.4.6 Doppler ultrasonography |
|
|
489 | (1) |
|
|
490 | (1) |
|
|
491 | (1) |
|
|
491 | (4) |
Index |
|
495 | |