Muutke küpsiste eelistusi

Infinite Matrices and Their Recent Applications 1st ed. 2016 [Kõva köide]

  • Formaat: Hardback, 118 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, X, 118 p., 1 Hardback
  • Ilmumisaeg: 28-Jun-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319301799
  • ISBN-13: 9783319301792
Teised raamatud teemal:
  • Kõva köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 118 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, X, 118 p., 1 Hardback
  • Ilmumisaeg: 28-Jun-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319301799
  • ISBN-13: 9783319301792
Teised raamatud teemal:
This monograph covers the theory of finite and infinite matrices, over the fields of real numbers, complex numbers and over quaternions. Emphasizing topics such as sections or truncations and their relationship to the linear operator theory on certain specific separable and sequence spaces, the authors explore techniques like conformal mapping, iterations and truncations that are used to derive precise estimates in some cases and explicit lower and upper bounds for solutions in the other cases.  Most of the matrices considered in this monograph have typically special structures like being diagonally dominated or tridiagonal, possess certain sign distributions and are frequently nonsingular. Such matrices arise for instance, from solution methods for elliptic partial differential equations. The authors focus on both theoretical and computational aspects concerning infinite linear algebraic equations, differential systems and infinite linear programming, among others. Additionally,

the authors cover topics such as Bessel"s and Mathieu"s equations, viscous fluid flow in doubly connected regions, digital circuit dynamics and eigenvalues of the Laplacian.

Introduction.- Finite Matrices and their Nonsingularity.- Infinite Linear Equations.- Generalized Inverses: Real or Complex Field.- Generalized Inverses: Quaternions.- M -matrices over Infinite Dimensional Spaces.- Infinite Linear Programming.- Applications.

Arvustused

The thin book provides readers with a comprehensive guide to the theory of finite and infinite matrices. The prospective audience of the monograph includes research students, academicians, researchers. All topics are thoroughly introduced including historical review and wide references. the book very carefully prepared and all formulas are well readable. (Cyril Fischer, zbMATH 1355.15001, 2017)

1 Introduction
1(4)
2 Finite Matrices and Their Nonsingularity
5(22)
2.1 Introduction
5(1)
2.2 Diagonal Dominance
6(10)
2.3 A Chain Condition
16(3)
2.4 Tridiagonal Matrices
19(4)
2.5 Sign Patterns
23(4)
3 Infinite Linear Equations
27(14)
3.1 Introduction
27(1)
3.2 Infinite Linear Systems
27(4)
3.3 Linear Eigenvalue Problem
31(4)
3.4 Linear Differential Systems
35(2)
3.5 An Iterative Method
37(4)
4 Generalized Inverses: Real or Complex Field
41(8)
4.1 Introduction
41(4)
4.2 On the Non-uniqueness of the Moore-Penrose Inverse and Group Inverse of Infinite Matrices
45(4)
5 Generalized Inverses: Quaternions
49(24)
5.1 Introduction
49(2)
5.2 {1}-Inverses of Quaternion Matrices
51(7)
5.3 The Moore--Penrose Inverse
58(3)
5.4 Leverrier-Faddeev Algorithm
61(6)
5.5 Finding Moore--Penrose Inverses by Interpolation
67(3)
5.6 Implementations and Examples
70(3)
6 M-Matrices over Infinite Dimensional Spaces
73(14)
6.1 Introduction
73(1)
6.2 Preliminary Notions
74(4)
6.3 P-Operators
78(1)
6.4 M-Operators
79(3)
6.5 Q-Operators
82(2)
6.6 Nonnegative Moore--Penrose Inverses of Gram Operators
84(3)
7 Infinite Linear Programming
87(6)
7.1 Introduction
87(1)
7.2 Preliminaries
88(1)
7.3 Finite Dimensional Approximation Scheme
89(1)
7.4 Approximate Optimal Solutions to a Doubly Infinite Linear Program
90(3)
8 Applications
93(18)
8.1 Introduction
93(1)
8.2 Two Applications of Weakly Chained Diagonally Dominant Matrices
93(2)
8.3 Conformal Mapping of Doubly Connected Regions
95(1)
8.4 Fluid Flow in Pipes
96(1)
8.5 Mathieu Equation
97(2)
8.6 Bessel Functions
99(1)
8.7 Vibrating Membrane with a Hole
99(1)
8.8 Groundwater Flow
100(1)
8.9 Eigenvalues of the Laplacian on an Elliptic Domain
101(2)
8.10 Shape of a Drum
103(4)
8.11 On Zeros of Taylor Series
107(4)
References 111(6)
Index 117