Muutke küpsiste eelistusi

Infrared Observation of Earth's Atmosphere [Kõva köide]

  • Formaat: Hardback, 258 pages, kõrgus x laius x paksus: 241x165x20 mm, kaal: 526 g
  • Ilmumisaeg: 13-Nov-2015
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1848215606
  • ISBN-13: 9781848215603
Teised raamatud teemal:
  • Formaat: Hardback, 258 pages, kõrgus x laius x paksus: 241x165x20 mm, kaal: 526 g
  • Ilmumisaeg: 13-Nov-2015
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • ISBN-10: 1848215606
  • ISBN-13: 9781848215603
Teised raamatud teemal:
This book is designed to provide the theoretical, but most of all, the practical bases needed for the achievement of atmospheric composition analyses from infrared remote sensing.
Acknowledgements ix
List of Symbols xi
List of Acronyms xv
Preface xxi
Introduction xxv
Chapter 1 Basic Physics of the Atmosphere and Radiation 1(44)
1.1 Structure and composition of Earth's atmosphere
2(5)
1.1.1 Vertical structure of the atmosphere
2(1)
1.1.2 Atmospheric gases
3(3)
1.1.3 Aerosols and hydrometeors
6(1)
1.2 Atmospheric aerosols
7(6)
1.2.1 Overview
7(2)
1.2.2 Microphysical properties of aerosols
9(4)
1.3 Clouds
13(7)
1.3.1 Definitions and classification
13(2)
1.3.2 Formation
15(2)
1.3.3 Microphysical properties
17(3)
1.4 Radiation in Earth's atmosphere
20(12)
1.4.1 Electromagnetic radiation
20(1)
1.4.2 The foundations of radiometry
21(2)
1.4.3 Solar and terrestrial radiation
23(6)
1.4.4 Reflection and emission of radiation by a surface
29(3)
1.5 Radiation budget of the climate system
32(10)
1.5.1 Radiative balance of the atmosphere
32(2)
1.5.2 The greenhouse effect and parasol effect
34(2)
1.5.3 Radiative forcing of atmospheric components
36(2)
1.5.4 Impact of aerosols on climate
38(1)
1.5.5 Impact of clouds on climate
39(1)
1.5.6 Climate sensitivity
40(1)
1.5.7 Observation of radiative budget
41(1)
1.6 For further information
42(3)
Chapter 2 Instrumentation and Sensors 45(24)
2.1 Platforms, satellites and sensors
46(10)
2.1.1 Types of orbits
46(3)
2.1.2 Characteristic parameters of satellites
49(1)
2.1.3 Geometry of lines of sight.
50(6)
2.2 Infrared detection techniques
56(10)
2.2.1 Radiometers
56(2)
2.2.2 High spectral resolution instruments
58(8)
2.3 For further information
66(3)
Chapter 3 Forward Radiative Transfer in Absorbing Atmosphere 69(36)
3.1 Gaseous absorption and emission
70(20)
3.1.1 Overview
70(2)
3.1.2 Rovibrational spectroscopy
72(13)
3.1.3 Line shapes
85(4)
3.1.4 Line intensity and absorption coefficient
89(1)
3.2 Radiative transfer equation in an absorbing medium
90(4)
3.3 Solving the RTE
94(8)
3.3.1 Models at high spectral resolution: line-by-line codes
94(1)
3.3.2 Approximate modeling of gas absorption
95(6)
3.3.3 Boundary conditions and atmospheric parameters
101(1)
3.4 For further information
102(3)
Chapter 4 Forward Radiative Transfer in Scattering Atmosphere 105(30)
4.1 Atmospheric scattering
106(8)
4.1.1 Main properties of scattering
106(4)
4.1.2 Rayleigh scattering
110(1)
4.1.3 Mie scattering
111(1)
4.1.4 Non-spherical particles
112(1)
4.1.5 Extinction coefficient and optical thickness
113(1)
4.2 Polarization
114(4)
4.3 Radiative transfer equation (RTE) in a scattering medium
118(9)
4.3.1 General expression of the RTE
118(2)
4.3.2 Solving of the RTE
120(4)
4.3.3 Azimuthal dependence of the radiation field
124(1)
4.3.4 Simplification of the phase function
125(2)
4.4 Numerical methods to solve the RTE in a scattering plane—parallel medium
127(4)
4.4.1 Approximate analytical expressions
128(1)
4.4.2 Discrete ordinate method
129(1)
4.4.3 Adding-doubling method
130(1)
4.4.4 Successive orders of scattering method
131(1)
4.5 List of radiative transfer codes
131(2)
4.6 For further information
133(2)
Chapter 5 Methods of Geophysical Parameter Retrieval 135(30)
5.1 Inversion process
136(2)
5.1.1 Principle of the inversion process
136(1)
5.1.2 The measurement vector and state vector
137(1)
5.1.3 The forward model
137(1)
5.2 Linear models
138(4)
5.2.1 Linear least squares (LLS) method
139(1)
5.2.2 Regularized linear model
140(2)
5.3 Nonlinear inversion
142(2)
5.4 Optimal estimation method (OEM)
144(12)
5.4.1 Inversion method
146(2)
5.4.2 Sensitivity of the measurement and informational content analysis
148(2)
5.4.3 Error analysis for the retrieved profile
150(1)
5.4.4 Example of water vapor profile retrieval from IASI
151(5)
5.5 Lookup tables
156(7)
5.6 For further information
163(2)
Chapter 6 Space Infrared Remote Sensing: Some Applications 165(30)
6.1 Water vapor isotopologues
166(4)
6.2 Biomass fires and trace gases
170(4)
6.3 Volcanic eruptions
174(7)
6.3.1 Sulphur dioxide
175(2)
6.3.2 Volcanic aerosols
177(4)
6.4 Physical properties of clouds
181(12)
6.4.1 Classification and physical properties of ice clouds
184(1)
6.4.2 Thermodynamic phase and altitude of clouds
185(8)
6.5 For further information
193(2)
Appendix 195(6)
Bibliography 201(10)
Index 211
Hervé Herbin is is associate Professor at the University of Lille 1, France.

Philippe Dubuisson is a Professor in the physics department at the University of Lille 1, France.