Muutke küpsiste eelistusi

Integral Transform Techniques for Green's Function 2014 ed. [Kõva köide]

(Yamagata University, Yonezawa, Japan)
  • Formaat: Hardback, 190 pages, kõrgus x laius x paksus: 234x156x12 mm, kaal: 473 g, 34 black & white illustrations, biography
  • Sari: Lecture Notes in Applied and Computational Mechanics 71
  • Ilmumisaeg: 11-Aug-2013
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319008781
  • ISBN-13: 9783319008783
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 190 pages, kõrgus x laius x paksus: 234x156x12 mm, kaal: 473 g, 34 black & white illustrations, biography
  • Sari: Lecture Notes in Applied and Computational Mechanics 71
  • Ilmumisaeg: 11-Aug-2013
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319008781
  • ISBN-13: 9783319008783
Teised raamatud teemal:
In this book mathematical techniques for integral transforms are described in detail but concisely. The techniques are applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. The Green's functions for beams, plates and acoustic media are also shown along with their mathematical derivations. Lists of Green's functions are presented for the future use. The Cagniard's-de Hoop method for the double inversion is described in detail, and 2D and 3D elasto-dynamics problems are fully treated.

This book describes mathematical techniques for integral transforms. It also applies the techniques to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations.
1 Definition of Integral Transforms and Distributions
1(10)
1.1 Integral Transforms
1(3)
1.2 Distributions and Their Integration Formulas
4(5)
1.3 Comments on Inversion Techniques and Integration Formulas
9(2)
References
10(1)
2 Green's Functions for Laplace and Wave Equations
11(32)
2.1 1D Impulsive Source
11(4)
2.2 1D Time-Harmonic Source
15(7)
2.3 2D Static Source
22(3)
2.4 2D Impulsive Source
25(3)
2.5 2D Time-Harmonic Source
28(6)
2.6 3D Static Source
34(3)
2.7 3D Impulsive Source
37(2)
2.8 3D Time-Harmonic Source
39(4)
References
42(1)
3 Green's Dyadic for an Isotropic Elastic Solid
43(34)
3.1 2D Impulsive Source
45(7)
3.2 2D Time-Harmonic Source
52(3)
3.3 2D Static Source
55(5)
3.4 3D Impulsive Source
60(10)
3.5 3D Time-Harmonic Source
70(2)
3.6 3D Static Source
72(5)
References
75(2)
4 Acoustic Wave in a Uniform Flow
77(16)
4.1 Compressive Viscous Fluid
77(2)
4.2 Linearization
79(3)
4.3 Viscous Acoustic Fluid
82(3)
4.4 Wave Radiation in a Uniform Flow
85(6)
4.5 Time-Harmonic Wave in a Uniform Flow
91(2)
References
92(1)
5 Green's Functions for Beam and Plate
93(14)
5.1 An Impulsive Load on a Beam
93(2)
5.2 A Moving Time-Harmonic Load on a Beam
95(4)
5.3 An Impulsive Load on a Plate
99(2)
5.4 A Time-Harmonic Load on a Plate
101(6)
References
106(1)
6 Cagniard-de Hoop Technique
107(50)
6.1 2D Anti-Plane Deformation
108(7)
6.2 2D In-Plane Deformation
115(15)
6.3 3D Dynamic Lamb's Problem
130(27)
References
155(2)
7 Miscellaneous Green's Functions
157(30)
7.1 2D Static Green's Dyadic for an Orthotropic Elastic Solid
157(7)
7.2 2D static Green's Dyadic for an Inhomogeneous Elastic Solid
164(9)
7.3 Reflection of a Transient SH-Wave at a Moving Boundary
173(14)
Reference
186(1)
Index 187
Professor Watanabe is retired professor (2012) of mechanical engineering; he is active member of the advisory board of Acta Mechanica and has already co-edited a book at Springer