Preface |
|
iii | |
Chapter I Basic Formulas |
|
|
|
1 | (1) |
|
1.2 The Gamma Function and Related Functions |
|
|
2 | (2) |
|
1.3 Generalized Hypergeometric Series |
|
|
4 | (18) |
|
1.3.1 Definition and Basic Properties |
|
|
4 | (1) |
|
1.3.2 Integral Representations |
|
|
5 | (2) |
|
1.3.3 Asymptotic Expansions |
|
|
7 | (7) |
|
1.3.4 The Form of Lp,q(z) for Special Values of the Parameters |
|
|
14 | (4) |
|
1.3.5 Special Values of Hypergeometric Functions |
|
|
18 | (1) |
|
1.3.6 Expansion of Hypergeometric Functions in Series of Hypergeometric Functions |
|
|
19 | (3) |
|
|
22 | (20) |
|
1.4.1 Power Series Expansions and Connecting Formulae |
|
|
22 | (3) |
|
1.4.2 Expansions in Series of Bessel Functions |
|
|
25 | (2) |
|
1.4.3 Difference-Differential Properties |
|
|
27 | (2) |
|
|
29 | (1) |
|
1.4.5 Integral Representations |
|
|
30 | (1) |
|
1.4.6 Asymptotic Expansions for Large z |
|
|
31 | (2) |
|
1.4.7 Polynomial Approximations |
|
|
33 | (7) |
|
1.4.8 Description of Mathematical Tables |
|
|
40 | (2) |
Chapter II Integrals Of The Type |
|
|
2.1 Definitions and Connecting Formulae |
|
|
42 | (2) |
|
2.2 Differential-Difference Properties |
|
|
44 | (1) |
|
2.3 Power Series Expansions |
|
|
44 | (7) |
|
2.4 Expansions in Series of Bessel Functions |
|
|
51 | (2) |
|
2.5 Asymptotic Expansions for Large z |
|
|
53 | (3) |
|
|
56 | (1) |
|
2.7 Circular Representations of Jn(z) and Jn(t)dt |
|
|
57 | (3) |
|
2.8 Polynomial Approximations |
|
|
60 | (9) |
|
2.9 Description of Mathematical Tables |
|
|
69 | (4) |
Chapter III Representations Of In Terms Of Lommel Functions |
|
|
3.1 A Theorem on Indefinite Integrals Involving a Bessel Function |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (1) |
|
3.4 Formulae for Sμ,v(z) When sμ,v(z) Is Not Defined |
|
|
76 | (1) |
|
3.5 Integral Representations |
|
|
77 | (2) |
|
3.6 Expansions in Series of Bessel Functions |
|
|
79 | (1) |
|
3.7 Lommel Functions and Struve Functions |
|
|
80 | (3) |
|
3.8 Anger-Weber Functions |
|
|
83 | (2) |
|
3.9 tμwv(t)dt and Formulae for Tabulated Functions |
|
|
85 | (4) |
|
3.10 Fourier-Bessel Coefficients |
|
|
89 | (3) |
|
3.11 Polynomial Approximations |
|
|
92 | (2) |
|
3.12 Description of Mathematical Tables |
|
|
94 | (1) |
Chapter IV An Associated Bessel Function |
|
|
|
95 | (1) |
|
4.2 Power Series Expansions and Connecting Formulae |
|
|
95 | (5) |
|
4.3 Expansions in Series of Bessel Functions |
|
|
100 | (1) |
|
4.4 Asymptotic Expansions for Large z |
|
|
101 | (5) |
|
|
106 | (1) |
|
4.6 An Associated Bessel Function |
|
|
107 | (3) |
|
|
110 | (1) |
|
4.8 Integral Representations |
|
|
110 | (2) |
|
4.9 Formulae for Hμ,v(z) When hμ,v(z) Is Not Defined |
|
|
112 | (3) |
|
4.10 Expansions of hμv(z) and Hμ,v(z) in Series of Bessel Functions |
|
|
115 | (2) |
|
4.11 Associated Bessel Function Representations for e-'ttμkv(t)dt and,-Related Integrals |
|
|
117 | (2) |
|
4.12 Description of Mathematical Tables |
|
|
119 | (1) |
Chapter V Reduction Formulas |
|
|
|
120 | (1) |
|
5.2 Evaluation of e-pttμWv(λt)dt for Special Values of the Parameters |
|
|
121 | (6) |
Chapter VI Airy Functions |
|
|
|
127 | (1) |
|
|
127 | (5) |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
128 | (1) |
|
6.2.4 Differential Equation and Wronskian |
|
|
128 | (1) |
|
|
129 | (1) |
|
6.2.6 Asymptotic Expansions |
|
|
129 | (2) |
|
6.2.7 Integral Representations |
|
|
131 | (1) |
|
6.3 Integrals of Airy Integrals |
|
|
132 | (8) |
|
6.3.1 Relations to Other Functions and Interrelations |
|
|
132 | (1) |
|
6.3.2 Power Series Expansions |
|
|
133 | (1) |
|
6.3.3 Convergent Expansions in Terms of Lommel Functions |
|
|
133 | (2) |
|
6.3.4 Expansions in Series of Bessel Functions |
|
|
135 | (1) |
|
6.3.5 Asymptotic Expansions |
|
|
136 | (4) |
|
6.4 The Integrals of Gi(z) and Hi(-z) |
|
|
140 | (1) |
|
6.5 Description of Mathematical Tables |
|
|
141 | (3) |
Chapter VII Incomplete Gamma Function And Related Functions |
|
|
|
144 | (1) |
|
7.2 Elementary Properties |
|
|
145 | (1) |
|
7.3 Integral Representations |
|
|
146 | (1) |
|
7.4 Asymptotic Expansions for Large z |
|
|
146 | (1) |
|
|
147 | (1) |
|
7.6 Expansions in Series of Bessel Functions |
|
|
148 | (4) |
|
7.7 Rational Approximations, Continued Fractions, Inequalities |
|
|
152 | (11) |
|
7.8 The Exponential Integral |
|
|
163 | (5) |
|
7.9 Sine and Cosine Integrals |
|
|
168 | (4) |
|
|
172 | (7) |
|
|
179 | (3) |
|
7.12 Indefinite and Definite Integrals Associated with the Incomplete Gamma Function and Related Functions |
|
|
182 | (5) |
|
7.13 Description of Mathematical Tables |
|
|
187 | (8) |
Chapter VIII Repeated Integrals Of Bessel Functions |
|
|
|
195 | (4) |
|
8.2 Power Series Expansions and Differential Equations |
|
|
199 | (12) |
|
|
211 | (1) |
|
8.4 Asymptotic Expansions for Large z |
|
|
212 | (4) |
|
|
216 | (1) |
|
8.6 Further Representations |
|
|
217 | (2) |
|
8.7 Asymptotic Expansions for Large Parameters |
|
|
219 | (2) |
|
8.8 Exponential Series Representations for Kα,v(z) |
|
|
221 | (2) |
Chapter IX Integrals Involving Struve Functions |
|
|
|
223 | (1) |
|
9.2 Power Series Expansions |
|
|
223 | (1) |
|
9.3 Asymptotic Expansions for Large z |
|
|
224 | (2) |
|
|
226 | (1) |
|
|
227 | (4) |
|
9.6 The Complete Cicala Function |
|
|
231 | (1) |
|
9.7 Description of Mathematical Tables |
|
|
232 | (2) |
Chapter X Schwarz Functions And Generalizations |
|
|
|
234 | (1) |
|
10.2 Power Series Expansions |
|
|
234 | (4) |
|
10.3 Expansions in Series of Bessel Functions |
|
|
238 | (3) |
|
10.4 Representation in Series of Circular Functions |
|
|
241 | (2) |
|
10.5 Asymptotic Expansions for Large z |
|
|
243 | (3) |
|
|
246 | (5) |
|
10.7 Description of Mathematical Tables |
|
|
251 | (2) |
Chapter XI Integrals Involving Products Of Bessel Functions And Struve Functions |
|
|
11.1 A General Theorem for the Evaluation of Indefinite Integrals |
|
|
253 | (1) |
|
11.2 Integrals Involving the Product of Two Bessel Functions |
|
|
254 | (10) |
|
11.3 Integrals Involving the Product of a Bessel Function and a Struve Function |
|
|
264 | (2) |
|
11.4 Integrals Involving the Product of Two Struve Functions |
|
|
266 | (2) |
|
11.5 Integrals Deduced from Wronskians |
|
|
268 | (1) |
|
11.6 An Integral Involving the Product of Three Bessel Functions |
|
|
269 | (2) |
Chapter XII Miscellaneous Indefinite Integrals Involving Bessel Functions |
|
|
|
271 | (12) |
|
|
271 | (1) |
|
12.1.2 Partial Differential Equations |
|
|
272 | (3) |
|
12.1.3 Power Series Expansions and Expansions in Series of Bessel Functions |
|
|
275 | (1) |
|
12.1.4 Laplace Transform and Integral Representations |
|
|
276 | (2) |
|
12.1.5 Asymptotic Expansions |
|
|
278 | (2) |
|
12.1.6 Integrals Related to J(x,y) |
|
|
280 | (2) |
|
12.1.7 Description of Mathematical Tables and Approximations |
|
|
282 | (1) |
|
12.2 A General Theorem for Representing an Indefinite Integral Involving Bessel Functions in Series of Bessel Functions |
|
|
283 | (6) |
|
12.3 Other Indefinite Integrals |
|
|
289 | (1) |
Chapter XIII Definite Integrals |
|
|
|
290 | (1) |
|
13.2 Orthogonality Properties of Bessel Functions |
|
|
290 | (2) |
|
|
292 | (20) |
|
13.3.1 Convolution Integrals |
|
|
292 | (1) |
|
13.3.2 Integrals Involving Bessel Functions with Trigonometric Argument |
|
|
293 | (15) |
|
13.3.3 Lommel's Functions of Two Variables |
|
|
308 | (4) |
|
|
312 | (37) |
|
13.4.1 Integrals with Exponential Functions |
|
|
312 | (12) |
|
13.4.2 Weber-Schafheitlin Type Integrals |
|
|
324 | (3) |
|
13.4.3 Sonine-Gegenbauer Type Integrals |
|
|
327 | (3) |
|
13.4.4 Hankel-Nicholson Type Integrals |
|
|
330 | (1) |
|
13.4.5 Integrals Involving the Products of Three or More Bessel Functions |
|
|
331 | (4) |
|
13.4.6 Miscellaneous Integrals |
|
|
335 | (5) |
|
13.4.7 Integrals with Respect to the Order |
|
|
340 | (2) |
|
13.4.8 Dual and Triple Integral Equations |
|
|
342 | |
Chapter XIV Tables Of Bessel Functions And Integrals Of Bessel Functions |
|
|
|
349 | (1) |
|
Table I. Jn(x) , Yn(x) , n = 0,1 |
|
|
350 | (3) |
|
Table II. e-xIn(x) , exKn(x) , n = 0,1 , ex |
|
|
353 | (3) |
|
Table III. Jn(x) , n = 2(1)6 |
|
|
356 | (3) |
|
Table IV. e-xIn(x) , n = 2(1)6 |
|
|
359 | (3) |
|
Table V. (π/2x)jn_i(x) , n = 0(1)4 |
|
|
362 | (3) |
|
Table VI. Tv(x) , v = ±1/4 ±3/4 |
|
|
365 | (3) |
|
Table VII. Jp(x) , v = ±1/3 , ±2/3 |
|
|
368 | (3) |
|
Table VIII. x-(n+1)In+1/2(x) , e-xIn+1/2(x) , n = 0(1)4 |
|
|
371 | (3) |
|
Table IX. Iv(x) , v = ±1/4 , ±3/4 |
|
|
374 | (3) |
|
Table X. Iv(x) , v = ±1/3 , ±2/3 |
|
|
377 | (3) |
|
Table XI. Integrals of Jo(x) and Yo(x) |
|
|
380 | (3) |
|
Table XII. Integrals of Io(x) and Ko(x) |
|
|
383 | (3) |
Bibliography |
|
386 | (18) |
Index of Notations |
|
404 | (6) |
Author Index |
|
410 | (4) |
Subject Index |
|
414 | |