Foreword |
|
xiii | |
Preface |
|
xv | |
Acknowledgments |
|
xix | |
1 An Introduction To Integrated Computational Materials Engineering (ICME) |
|
1 | (44) |
|
|
2 | (1) |
|
1.2 The Application of Multiscale Materials Modeling via ICME |
|
|
2 | (2) |
|
1.3 History of Multiscale Modeling |
|
|
4 | (18) |
|
1.3.1 Bridging between Scales: A Difference of Disciplines |
|
|
6 | (16) |
|
|
22 | (7) |
|
1.4.1 Design Optimization |
|
|
23 | (3) |
|
1.4.2 Metamodeling Approaches |
|
|
26 | (1) |
|
1.4.3 Design with Uncertainty Analysis |
|
|
27 | (2) |
|
1.5 ICME for Manufacturing |
|
|
29 | (1) |
|
|
29 | (2) |
|
|
31 | (14) |
2 Macroscale Continuum Internal State Variable (ISV) Plasticity-Damage Theory And Multistage Fatigue (MSF) |
|
45 | (53) |
|
|
45 | (1) |
|
|
46 | (8) |
|
2.3 Kinematics of Deformation and Strain |
|
|
54 | (4) |
|
2.4 Continuum Theory Constitutive Equations |
|
|
58 | (17) |
|
2.4.1 Thermodynamics of the ISV Constitutive Equations |
|
|
62 | (4) |
|
2.4.2 Kinetics of the ISV Constitutive Equations |
|
|
66 | (7) |
|
2.4.3 Continuum Theory ISV Constitutive Equations with Discrete Structures Defects |
|
|
73 | (1) |
|
2.4.4 Guidelines for the Development of an ISV |
|
|
74 | (1) |
|
2.5 Multistage Fatigue (MSF) Modeling |
|
|
75 | (5) |
|
2.6 Bridging Strategies for the Macroscale and the Mesoscale |
|
|
80 | (5) |
|
2.6.1 Downscaling: Defining the Macroscale Constraints for the Mesoscale Analysis |
|
|
80 | (1) |
|
2.6.2 Upscaling: Using Design of Experiments (DOE) for Mesoscale Analysis |
|
|
80 | (5) |
|
2.7 Experimental Exploration, Calibration, and Validation at the Macroscale |
|
|
85 | (2) |
|
|
87 | (1) |
|
|
88 | (10) |
3 Mesoscale Analysis: Continuum Theory Methods With Discrete Features Methods |
|
98 | (30) |
|
3.1 Kinematics of Crystal Plasticity |
|
|
100 | (4) |
|
3.2 Kinetics of Crystal Plasticity |
|
|
104 | (4) |
|
3.3 Crystal Orientations and Elasticity |
|
|
108 | (2) |
|
3.4 Upscaling: Bridging the Crystal Level to the Polycrystalline Continuum Level |
|
|
110 | (12) |
|
3.4.1 Upscaling for Plasticity |
|
|
111 | (8) |
|
3.4.2 Upscaling for Damage Fracture |
|
|
119 | (1) |
|
3.4.3 Upscaling for Fatigue |
|
|
120 | (2) |
|
3.5 Downscaling from Crystal Plasticity to Dislocation Dynamics |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
3.6 Experimental Exploration, Calibration, and Validation at the Mesoscale |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
123 | (5) |
4 Discrete Dislocation Dynamics Simulations |
|
128 | (18) |
|
|
128 | (1) |
|
4.2 Metal Plasticity Modeling |
|
|
129 | (2) |
|
4.3 Dislocation Mechanics Basics |
|
|
131 | (4) |
|
4.3.1 Geometrical Attributes of Dislocations |
|
|
131 | (1) |
|
|
132 | (2) |
|
4.3.3 Dislocation Motion and Plastic Strain |
|
|
134 | (1) |
|
4.3.4 Dislocations Reactions |
|
|
135 | (1) |
|
4.4 Modeling Discrete Dislocations |
|
|
135 | (4) |
|
4.4.1 Dislocation Equation of Motion |
|
|
136 | (1) |
|
4.4.2 Evaluation of Fdislocation |
|
|
137 | (1) |
|
4.4.3 Evaluation of Fself |
|
|
138 | (1) |
|
|
139 | (1) |
|
4.6 Upscaling for Plasticity |
|
|
140 | (3) |
|
4.6.1 Upscaling for the Macroscopic Plastic Strain |
|
|
140 | (1) |
|
4.6.2 Upscaling: Bridging the Dislocation Level to the Macroscale Continuum Level Stresses and Strains |
|
|
140 | (3) |
|
4.6.3 Upscaling for Work Hardening |
|
|
143 | (1) |
|
4.7 Downscaling from DD to Atomistics |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
144 | (2) |
5 Atomistic Modeling Methods |
|
146 | (18) |
|
|
147 | (1) |
|
|
148 | (5) |
|
5.3 Upscaling; Bridging the Atomic Level to the Dislocation Density Level and the Continuum Level |
|
|
153 | (6) |
|
5.3.1 Continuum Quantities for Upscaling |
|
|
153 | (2) |
|
5.3.2 Upscaling for Plasticity |
|
|
155 | (1) |
|
5.3.3 Upscaling for Damage |
|
|
156 | (1) |
|
5.3.4 Upscaling for Fatigue |
|
|
157 | (1) |
|
5.3.5 Downscaling from Atomistics to Electronics Structures Calculations |
|
|
157 | (2) |
|
|
159 | (1) |
|
|
159 | (5) |
6 Electronic Structure Calculations |
|
164 | (23) |
|
|
164 | (1) |
|
6.2 Why Quantum Mechanics? |
|
|
165 | (1) |
|
6.3 Theoretical Background |
|
|
166 | (2) |
|
6.4 Postulates of Quantum Mechanics |
|
|
168 | (2) |
|
6.5 Prior to Density Functional Theory (DFT) |
|
|
170 | (5) |
|
|
175 | (1) |
|
6.7 Upscaling: Bridging the Electron Level to the Atom Level |
|
|
176 | (8) |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
179 | (1) |
|
6.7.5 Vacancy Formation Energies |
|
|
180 | (1) |
|
6.7.6 Interstitial Defects |
|
|
180 | (1) |
|
6.7.7 Surface Formation Energies |
|
|
181 | (1) |
|
6.7.8 Surface Adsorption Energies |
|
|
181 | (1) |
|
6.7.9 Stacking Fault Energies |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (3) |
|
|
184 | (1) |
|
|
185 | (2) |
7 Case Study: From Atoms To Autos: A Redesign Of A Cadillac Control Arm |
|
187 | (153) |
|
|
187 | (8) |
|
7.1.1 Material: Cast A356 Aluminum Alloy |
|
|
189 | (1) |
|
7.1.2 Modeling Philosophy |
|
|
189 | (6) |
|
7.2 Macroscale Microstructure-Property Internal State Variable (ISV) Plasticity-Damage Model |
|
|
195 | (16) |
|
7.2.1 Kinematics of the Macroscale Model |
|
|
196 | (4) |
|
7.2.2 Void Nucleation, Growth, and Coalescence Aspects of the Macroscale Model |
|
|
200 | (5) |
|
7.2.3 Elastic-Plastic Aspects of Macroscale Continuum Model |
|
|
205 | (4) |
|
7.2.4 Macroscale Continuum Model Summary |
|
|
209 | (2) |
|
7.3 Bridges 1 and 5: Electronics Structure Calculations: Connections to the Atomic Scale and Macroscale Continuum Level |
|
|
211 | (5) |
|
7.3.1 Atomistic Level Downscaling Requirements |
|
|
213 | (3) |
|
7.4 Bridges 2 and 6: Nanoscale Atomistic Simulations: Connections to the Microscale and Macroscale |
|
|
216 | (17) |
|
7.4.1 Atomistic Simulation Preliminaries |
|
|
217 | (1) |
|
7.4.2 Aluminum-Silicon Interface Structure and Model Sensitivity |
|
|
218 | (6) |
|
7.4.3 Aluminum-Silicon Interface Debonding |
|
|
224 | (2) |
|
7.4.4 Role of Vacancy-Type Defects |
|
|
226 | (3) |
|
7.4.5 Upscaling: Comparison of Continuum Decohesion Models for the Microscale Simulations |
|
|
229 | (4) |
|
7.5 Bridges 3 and 7: Microscale Finite Element Simulations: Connections to the Mesoscale and Macroscale |
|
|
233 | (14) |
|
7.5.1 Design of Experiment Parameters for Void-Crack Nucleation at the Microscale |
|
|
236 | (2) |
|
|
238 | (2) |
|
7.5.3 Micromechanical DOE Results Using FEA |
|
|
240 | (4) |
|
7.5.4 Validation Experiments |
|
|
244 | (1) |
|
7.5.5 Bridge 6: From Microscale to Macroscale Modeling: Void Crack Nucleation |
|
|
245 | (2) |
|
7.5.6 Summary of Bridges Related to the Microscale |
|
|
247 | (1) |
|
7.6 Bridges 4 and 8: Mesoscale 1 Finite Element Simulations: Connections to the Mesoscale 2 and Macroscale |
|
|
247 | (12) |
|
7.6.1 Mesoscale 1 Finite Element Simulation Setup and Results for the Realistic Microstructures |
|
|
251 | (7) |
|
7.6.2 Bridge 8: From Mesoscale 1 to Macroscale Modeling: Pore Coalescence |
|
|
258 | (1) |
|
7.6.3 Summary of Bridges Related to the Mesoscale 1 Finite Element Simulations |
|
|
258 | (1) |
|
7.7 Bridge 9: Mesoscale 2 Finite Element Simulations (Idealized Porosity): Connections to the Macroscale |
|
|
259 | (17) |
|
7.7.1 Mesoscale 2 Finite Element Simulation Setup and Results for the Idealized Porosity |
|
|
260 | (1) |
|
7.7.2 Pore Coalescence Parametric Study |
|
|
260 | (6) |
|
7.7.3 Temperature Effects on Pore Coalescence |
|
|
266 | (9) |
|
7.7.4 Bridge 9: From Mesoscale 2 to Macroscale Modeling: Pore Coalescence |
|
|
275 | (1) |
|
7.7.5 Summary of Bridges Related to Mesoscale 2 Idealized Porosity Simulations |
|
|
276 | (1) |
|
7.8 Bridge 10: Macroscale Material Model: Connections to the Macroscale Finite Element Simulations |
|
|
276 | (27) |
|
7.8.1 Summary of Bridge Information from the Lower Length Scales into the Macroscale Continuum Model |
|
|
277 | (1) |
|
7.8.2 Hierarchical Multiscale Macroscale Continuum ISV Theory: Calibration and Validation |
|
|
278 | (1) |
|
7.8.3 Model Calibration of the Continuum ISV Model |
|
|
279 | (7) |
|
7.8.4 Model Validation of the Macroscale Continuum ISV Model |
|
|
286 | (17) |
|
7.8.5 Summary of Bridges Related to the Macroscale Simulations |
|
|
303 | (1) |
|
7.9 Predictive Modeling of Structural Components for the Case Study of the Cast A356 Aluminum Alloy |
|
|
303 | (7) |
|
7.9.1 Weapons Carrier Analysis |
|
|
304 | (2) |
|
7.9.2 Automotive Control Arm Analysis |
|
|
306 | (4) |
|
7.10 Design Optimization with Uncertainty of the Automotive Control Arm |
|
|
310 | (17) |
|
7.10.1 Conventional Design Optimization Method |
|
|
311 | (1) |
|
7.10.2 Design Optimization Employing Surrogate (Metamodel) Modeling with Probabilistics (Reliability) under Uncertainty with the Macroscale Continuum ISV Model that Included the Hierarchical Multiscale Analysis and Associated Microstructures from the Different Length Scales |
|
|
312 | (15) |
|
|
327 | (1) |
|
|
328 | (12) |
8 Case Study: A Microstructure-Property Multistage Fatigue (MSF) Analysis Of A Cadillac Control Arm |
|
340 | (39) |
|
8.1 Introduction to the Mechanisms of Fatigue in Cast Alloys |
|
|
340 | (6) |
|
|
346 | (4) |
|
|
346 | (1) |
|
|
347 | (3) |
|
8.3 Macroscale MSF Modeling Bridges (Upscaling and Downscaling) |
|
|
350 | (23) |
|
8.3.1 Bridge 7 Atomistic Simulations for Determining the Crack Driving Force Coefficient for the MSC Growth Rate in the Macroscale MSF Model |
|
|
352 | (2) |
|
8.3.2 Bridge 9 Mesoscale Finite Element Simulations for the Nonlocal Plasticity Parameter in the Incubation Equation: Connections to the Macroscale |
|
|
354 | (9) |
|
8.3.3 Bridge 10 Mesoscale Finite Element Simulations for the MSC: Connections to the Macroscale |
|
|
363 | (3) |
|
8.3.4 Bridge 12 Macroscale MSF Model Calibration |
|
|
366 | (7) |
|
|
373 | (1) |
|
|
374 | (5) |
|
|
374 | (3) |
|
|
377 | (2) |
9 Case Study: Conducting A Structural Scale Metal Forming Finite Element Analysis Starting From Electronics Structures Calculations Using ICME Tools |
|
379 | (31) |
|
|
379 | (1) |
|
|
380 | (2) |
|
9.3 Bridge 1: Electronics Principles to Atomistic Simulation Connection |
|
|
382 | (4) |
|
9.3.1 Atomistic Model Calibration Using the Modified Embedded Atom Method (MEAM) Potential |
|
|
382 | (1) |
|
9.3.2 Atomistic Model Validation Using the MEAM Potential |
|
|
382 | (4) |
|
9.4 Bridge 2: Atomistic Simulation to Dislocation Density Simulation Connection |
|
|
386 | (5) |
|
9.5 Bridge 3: Dislocation Density to CP Simulation Connection |
|
|
391 | (7) |
|
9.5.1 Model Calibration of Hardening Equations |
|
|
391 | (5) |
|
9.5.2 Model Validation of the Hardening Equations |
|
|
396 | (2) |
|
9.6 Bridge 9: CP to Macroscale Continuum Simulation Connection |
|
|
398 | (4) |
|
9.7 Bridge 12: Macroscale Continuum Model to the Structural Scale Simulation of the Sheet Forming Problem |
|
|
402 | (2) |
|
|
404 | (2) |
|
|
406 | (4) |
10 The Near Future: ICME For The Creation Of New Materials And Structures |
|
410 | (15) |
|
10.1 Integrating Process, Structure, Property, and Performance |
|
|
410 | (7) |
|
|
417 | (2) |
|
|
419 | (1) |
|
|
419 | (1) |
|
10.5 Nano- and Microstructures Small Devices |
|
|
419 | (2) |
|
|
421 | (1) |
|
|
422 | (3) |
Index |
|
425 | |