Preface |
|
xix | |
About the Authors |
|
xxi | |
Chapter 1 Power Electronics, the Enabling Green Technology |
|
1 | (26) |
|
1.1 Introduction to Power Electronics |
|
|
1 | (2) |
|
1.2 History of Power Electronics |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.4 Linear Voltage Regulators |
|
|
4 | (1) |
|
1.5 Switched Capacitor DC/DC Converters (Charge Pumps) |
|
|
5 | (2) |
|
1.6 Switched Mode DC/DC Converters |
|
|
7 | (1) |
|
1.7 Comparison between Linear Regulators, Charge Pumps, and Switched Regulators |
|
|
8 | (1) |
|
1.8 Topologies for Nonisolated DC/DC Switched Converters |
|
|
9 | (8) |
|
|
9 | (2) |
|
|
11 | (2) |
|
1.8.3 Buck-Boost Converter |
|
|
13 | (1) |
|
|
14 | (1) |
|
1.8.5 Additional Topics in Nonisolated Converters |
|
|
15 | (2) |
|
1.8.5.1 Nonideal Power Elements |
|
|
15 | (1) |
|
1.8.5.2 Synchronous Rectification |
|
|
15 | (1) |
|
1.8.5.3 Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM) |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
16 | (1) |
|
1.8.5.6 Comparison of Nonisolated Topologies |
|
|
16 | (1) |
|
1.9 Topologies for Isolated Switching Converters |
|
|
17 | (7) |
|
|
17 | (1) |
|
|
18 | (1) |
|
1.9.3 Full-Bridge Converters |
|
|
19 | (2) |
|
1.9.4 Half-Bridge Converters |
|
|
21 | (1) |
|
1.9.5 Push-Pull Converters |
|
|
21 | (1) |
|
1.9.6 Additional Topics in Isolated DC/DC Converters |
|
|
22 | (2) |
|
1.9.6.1 Synchronous Rectification of Isolated DC/DC Converters |
|
|
22 | (1) |
|
1.9.6.2 Power MOSFET Parallel Body Diode Conduction |
|
|
22 | (1) |
|
1.9.6.3 Transformer Utilization |
|
|
23 | (1) |
|
1.9.6.4 Voltage Stress on the Active Power Transistor |
|
|
23 | (1) |
|
1.9.7 Comparison of Isolated DC/DC Converter Topologies |
|
|
24 | (1) |
|
1.10 SPICE Circuit Simulation |
|
|
24 | (1) |
|
1.11 Power Management Systems for Battery-Powered Devices |
|
|
25 | (1) |
|
|
26 | (1) |
Chapter 2 Power Converters and Power Management ICs |
|
27 | (12) |
|
2.1 Dynamic Voltage Scaling for VLSI Power Management |
|
|
27 | (2) |
|
2.2 Integrated DC/DC Converters |
|
|
29 | (9) |
|
2.2.1 Segmented Output Stage |
|
|
31 | (3) |
|
2.2.2 Transient Suppression with an Auxiliary Stage |
|
|
34 | (4) |
|
|
38 | (1) |
Chapter 3 Semiconductor Industry and More than Moore |
|
39 | (12) |
|
3.1 Semiconductor Industry |
|
|
39 | (1) |
|
3.2 History of the Semiconductor Industry |
|
|
39 | (3) |
|
|
39 | (1) |
|
3.2.2 The Traitorous Eight |
|
|
39 | (1) |
|
3.2.3 Historical Road Map of the Semiconductor Industry |
|
|
39 | (3) |
|
3.3 Food Chain Pyramid of the Semiconductor Industry |
|
|
42 | (4) |
|
3.3.1 Level 1: Wafer and EDA Tools |
|
|
42 | (1) |
|
3.3.2 Level 2: Device Engineering |
|
|
43 | (1) |
|
|
44 | (1) |
|
3.3.4 Level 4: Manufacturing, Packaging, and Testing |
|
|
44 | (1) |
|
3.3.5 Level 5: Systems and Software |
|
|
45 | (1) |
|
3.3.6 Level 6: Marketing and Sales |
|
|
45 | (1) |
|
3.4 Semiconductor Companies |
|
|
46 | (1) |
|
|
47 | (4) |
Chapter 4 Smart Power IC Technology |
|
51 | (16) |
|
4.1 Smart Power IC Technology Basics |
|
|
51 | (1) |
|
4.2 Smart Power IC Technology: Historical Perspective |
|
|
51 | (3) |
|
4.3 Smart Power IC Technology: Industrial Perspective |
|
|
54 | (8) |
|
4.3.1 Engineering Groups of a Smart Power IC Technology |
|
|
54 | (2) |
|
4.3.1.1 Process Integration |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
4.3.1.6 Process Design Kit |
|
|
56 | (1) |
|
|
56 | (1) |
|
4.3.1.8 Reliability Group |
|
|
56 | (1) |
|
|
56 | (1) |
|
4.3.2 Smart Power IC Technology Development Flow |
|
|
56 | (1) |
|
|
56 | (1) |
|
4.3.4 Process Integration and Device Design |
|
|
57 | (3) |
|
4.3.5 Layout, Tape-Out, Fabrication, and Test |
|
|
60 | (1) |
|
4.3.6 Reliability and Qualification |
|
|
60 | (1) |
|
4.3.7 Survey of Current Smart Power Technology |
|
|
61 | (1) |
|
4.4 Smart Power IC Technology: Technological Perspective |
|
|
62 | (5) |
|
4.4.1 Devices for Smart Power Technology |
|
|
62 | (1) |
|
4.4.2 Design Considerations for Smart Power IC Technology |
|
|
63 | (3) |
|
|
63 | (1) |
|
|
64 | (1) |
|
4.4.2.3 Analog Active Devices |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
4.4.2.6 Voltage and Frequency Trims |
|
|
65 | (1) |
|
4.4.2.7 Logic/Digital NMOS and PMOS |
|
|
65 | (1) |
|
4.4.2.8 System-Level Design and Fabrication Considerations |
|
|
65 | (1) |
|
|
66 | (1) |
Chapter 5 Introduction to TCAD Process Simulation |
|
67 | (20) |
|
|
67 | (1) |
|
5.2 Mesh Setup and Initialization |
|
|
67 | (2) |
|
|
69 | (3) |
|
|
69 | (1) |
|
5.3.2 Multiple-Layer Implantation |
|
|
70 | (1) |
|
5.3.3 Monte Carlo Simulation |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
72 | (3) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
73 | (4) |
|
5.5.3.1 Moving Boundaries |
|
|
73 | (1) |
|
5.5.3.2 2D Analytical Models |
|
|
74 | (1) |
|
|
74 | (1) |
|
5.5.3.4 LOCOS Growth Example |
|
|
75 | (1) |
|
|
75 | (2) |
|
|
77 | (3) |
|
5.7.1 Diffusion Mechanisms |
|
|
77 | (1) |
|
5.7.1.1 Direct Diffusion Mechanism |
|
|
77 | (1) |
|
5.7.1.2 Vacancy Mechanism |
|
|
77 | (1) |
|
5.7.1.3 Interstitials Mechanism |
|
|
77 | (1) |
|
|
78 | (9) |
|
5.7.2.1 Fermi Diffusion Model |
|
|
78 | (1) |
|
5.7.2.2 Two-Dimensional Diffusion Model |
|
|
78 | (1) |
|
5.7.2.3 Fully Coupled Diffusion Model |
|
|
78 | (1) |
|
5.7.2.4 Steady-State Diffusion Model |
|
|
79 | (1) |
|
5.7.2.5 Oxide Enhanced (Retarded) Diffusion |
|
|
79 | (1) |
|
|
80 | (2) |
|
5.9 Process Simulator Models Calibration |
|
|
82 | (1) |
|
5.10 Introduction to 3D TCAD Process Simulation |
|
|
82 | (2) |
|
|
84 | (3) |
Chapter 6 Introduction to TCAD Device Simulation |
|
87 | (34) |
|
|
87 | (1) |
|
6.2 Basics about Device Simulation |
|
|
87 | (6) |
|
6.2.1 Drift-Diffusion Model |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
88 | (1) |
|
6.2.4 Initial Guess and Adaptive Bias Stepping |
|
|
89 | (1) |
|
|
90 | (1) |
|
6.2.6 Boundary Conditions |
|
|
91 | (1) |
|
|
91 | (1) |
|
6.2.6.2 Schottky Contacts |
|
|
91 | (1) |
|
6.2.6.3 Neumann Boundaries |
|
|
92 | (1) |
|
|
92 | (1) |
|
6.2.7 Transient Simulation |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
93 | (15) |
|
|
93 | (1) |
|
6.3.2 Incomplete Ionization of Impurities |
|
|
93 | (1) |
|
6.3.3 Heavy Doping Effect |
|
|
94 | (1) |
|
6.3.4 SRH and Auger Recombination |
|
|
94 | (1) |
|
6.3.5 Avalanche Breakdown and Impact Ionization |
|
|
94 | (6) |
|
6.3.5.1 Avalanche Breakdown |
|
|
94 | (1) |
|
6.3.5.2 Impact Ionization Coefficients |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
6.3.5.5 Fulop's Approximation |
|
|
96 | (1) |
|
6.3.5.6 Okuto-Crowell Model |
|
|
96 | (1) |
|
|
96 | (1) |
|
6.3.5.8 Mean Free Path Model |
|
|
97 | (1) |
|
6.3.5.9 Multiplication Factor and Ionization Integral |
|
|
98 | (1) |
|
6.3.5.10 Critical Electric Field |
|
|
99 | (1) |
|
6.3.5.11 Analytical Breakdown Voltage |
|
|
100 | (1) |
|
6.3.5.12 Benchmark Comparison of Avalanche Breakdown Models |
|
|
100 | (1) |
|
|
100 | (6) |
|
|
101 | (1) |
|
6.3.6.2 Constant Mobility |
|
|
101 | (1) |
|
6.3.6.3 Two-Piece Mobility Model |
|
|
102 | (1) |
|
6.3.6.4 Canali or Beta Model |
|
|
102 | (1) |
|
6.3.6.5 Transferred Electron Model |
|
|
102 | (1) |
|
6.3.6.6 Poole-Frenkel Field Enhanced Mobility Model |
|
|
102 | (1) |
|
6.3.6.7 Impurity Dependence of the Low Field Mobility Model |
|
|
103 | (1) |
|
6.3.6.8 Intel's Local Field Models |
|
|
103 | (1) |
|
|
103 | (1) |
|
6.3.6.10 Comparison of Different Diffusion Models |
|
|
104 | (1) |
|
6.3.6.11 GaN Mobility Model (MTE Model) |
|
|
104 | (2) |
|
6.3.7 Thermal and Self-Heating |
|
|
106 | (1) |
|
6.3.7.1 Heat Flow and Temperature Distribution |
|
|
106 | (1) |
|
6.3.8 Bandgap Narrowing Effect |
|
|
107 | (1) |
|
|
108 | (4) |
|
|
108 | (1) |
|
|
108 | (3) |
|
6.4.3 AC Analysis in TCAD |
|
|
111 | (1) |
|
6.5 Trap Model in TCAD Simulation |
|
|
112 | (3) |
|
|
112 | (1) |
|
|
112 | (3) |
|
|
115 | (4) |
|
6.6.1 Importance of Quantum Tunneling for Power Devices |
|
|
115 | (1) |
|
6.6.2 Basic Theory of Tunneling for TCAD Simulation |
|
|
116 | (3) |
|
6.6.3 Introduction to Nonequilibrium Green's Function for Tunneling |
|
|
119 | (1) |
|
6.7 Device Simulator Models Calibration |
|
|
119 | (2) |
Chapter 7 Power IC Process Flow with TCAD Simulation |
|
121 | (32) |
|
|
121 | (1) |
|
7.2 A Mock-Up Power IC Process Flow |
|
|
121 | (2) |
|
|
121 | (1) |
|
7.2.2 Structure View of the Mock-Up Process Flow |
|
|
121 | (2) |
|
7.3 Smart Power IC Process Flow Simulation |
|
|
123 | (30) |
|
|
123 | (1) |
|
|
123 | (1) |
|
7.3.3 Epitaxial Layer Growth and Deep N Link |
|
|
124 | (3) |
|
7.3.4 High-Voltage Twin-Well |
|
|
127 | (1) |
|
7.3.5 P-Body Implant for n-LDMOS |
|
|
128 | (2) |
|
7.3.6 Active Area/Shallow Trench Isolation (STI) |
|
|
130 | (4) |
|
|
134 | (2) |
|
7.3.8 Low-Voltage Twin Wells |
|
|
136 | (1) |
|
7.3.9 Thick Gate and Thin Gate Oxide |
|
|
137 | (3) |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (2) |
|
7.3.14 Back-End of the Line |
|
|
146 | (7) |
Chapter 8 Integrated Power Semiconductor Devices with TCAD Simulation |
|
153 | (86) |
|
|
153 | (24) |
|
|
153 | (1) |
|
8.1.2 Lateral PN Junction Diode at Equilibrium |
|
|
154 | (3) |
|
8.1.3 Forward Conduction (On-State) |
|
|
157 | (2) |
|
8.1.4 Reverse Bias of a PN Junction Diode |
|
|
159 | (1) |
|
8.1.5 Lateral PN Junction Diode with NBL |
|
|
160 | (1) |
|
8.1.6 Breakdown Voltage Enhancement of the PN Junction Diode |
|
|
160 | (8) |
|
8.1.6.1 Basic Understanding of How to Improve Breakdown Voltage |
|
|
161 | (2) |
|
8.1.6.2 Different P-Substrate Doping for the PN Junction Diode without NBL |
|
|
163 | (2) |
|
8.1.6.3 Breakdown Enhancement for Diode with NBL |
|
|
165 | (3) |
|
8.1.6.4 Reverse Leakage Current Path with Substrate Contact |
|
|
168 | (1) |
|
|
168 | (2) |
|
8.1.7.1 Basic Understanding of Diode Reverse Recovery |
|
|
168 | (2) |
|
8.1.7.2 Diode Reverse Recovery TCAD Simulation |
|
|
170 | (1) |
|
8.1.7.3 TCAD Simulations for Carrier Lifetime Engineering |
|
|
170 | (1) |
|
|
170 | (4) |
|
|
174 | (1) |
|
8.1.10 Small Signal Model for PN Junction Diode |
|
|
175 | (2) |
|
8.2 Bipolar Junction Transistors |
|
|
177 | (16) |
|
8.2.1 Basic Operation of NPN BJTs |
|
|
178 | (3) |
|
8.2.1.1 Simulation Structure |
|
|
178 | (2) |
|
8.2.1.2 Collector and Base Current |
|
|
180 | (1) |
|
8.2.1.3 Transistor Gain and Gummel Plot |
|
|
180 | (1) |
|
|
181 | (4) |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
181 | (2) |
|
|
183 | (1) |
|
8.2.2.5 Comparison of the Four Types of NPN Breakdown |
|
|
184 | (1) |
|
8.2.3 BJT I-V Family of Curves |
|
|
185 | (1) |
|
|
186 | (1) |
|
8.2.5 BJT Thermal Runaway and Second Breakdown Simulation |
|
|
187 | (5) |
|
8.2.6 BJT Small Signal Model and Cutoff Frequency Simulation |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
193 | (46) |
|
8.3.1 Breakdown Voltage Improvement |
|
|
194 | (27) |
|
8.3.1.1 Basic LDMOS Structure with N-Type Epitaxial Layer (LDMOS I) |
|
|
194 | (2) |
|
8.3.1.2 LDMOS with Shielding Plate (LDMOS II) |
|
|
196 | (5) |
|
8.3.1.3 LDMOS with STI in the Drain-Drift Region (LDMOS III) |
|
|
201 | (2) |
|
8.3.1.4 LDMOS with Both STI Oxide and Field Plate (LDMOS IV) |
|
|
203 | (3) |
|
8.3.1.5 LDMOS with RESURF from P-epi Layer (LDMOS V) |
|
|
206 | (3) |
|
8.3.1.6 LDMOS with P-epi RESURF and STI (LDMOS VI) |
|
|
209 | (3) |
|
8.3.1.7 LDMOS with Double RESURF (LDMOS VII) |
|
|
212 | (6) |
|
8.3.1.8 LDMOS Multiple RESURF (LDMOS VIII) |
|
|
218 | (3) |
|
8.3.1.9 Comparison of 3D Surface Plot of Electric Field |
|
|
221 | (1) |
|
8.3.2 Parasitic NPN BJTs in LDMOS |
|
|
221 | (2) |
|
8.3.3 LDMOS On-State Resistance |
|
|
223 | (4) |
|
8.3.3.1 Specific On-Resistance |
|
|
225 | (1) |
|
8.3.3.2 On-Resistance Contribution |
|
|
225 | (1) |
|
8.3.3.3 Comparison of Breakdown Voltage and On-Resistance |
|
|
226 | (1) |
|
8.3.4 LDMOS Threshold Voltage |
|
|
227 | (1) |
|
8.3.5 LDMOS with Radiation Hardening Design |
|
|
228 | (1) |
|
8.3.6 LDMOS I-V Family of Curves |
|
|
229 | (1) |
|
|
230 | (2) |
|
8.3.8 LDMOS Parasitic Capacitances |
|
|
232 | (2) |
|
|
234 | (2) |
|
8.3.10 LDMOS Unclamped Inductive Switching (UIS) |
|
|
236 | (1) |
|
8.3.11 Compact Models of LDMOS |
|
|
237 | (2) |
Chapter 9 Integrated Power Semiconductor Devices with 3D TCAD Simulations |
|
239 | (42) |
|
9.1 3D Device Layout Effect |
|
|
239 | (3) |
|
9.2 3D Simulation of LIGBT |
|
|
242 | (12) |
|
|
242 | (1) |
|
9.2.2 Segmented Anode LIGBT |
|
|
243 | (2) |
|
9.2.3 3D Process Simulation of Segmented Anode LIGBT |
|
|
245 | (3) |
|
9.2.4 3D Device Simulation of Segmented Anode LIGBT |
|
|
248 | (6) |
|
9.2.4.1 Forward Characteristic Simulation |
|
|
248 | (3) |
|
9.2.4.2 LIGBT Turnoff Transient Simulation |
|
|
251 | (2) |
|
9.2.4.3 Forward I-V Family of Curves Comparison with LDMOS |
|
|
253 | (1) |
|
|
254 | (14) |
|
|
254 | (7) |
|
9.3.1.1 How to Choose the Pillar Width WN |
|
|
255 | (3) |
|
9.3.1.2 About Dose Balance |
|
|
258 | (2) |
|
|
260 | (1) |
|
9.3.2 Super Junction LDMOS Structure |
|
|
261 | (2) |
|
9.3.3 3D Process Simulation of Super Junction LDMOS |
|
|
263 | (1) |
|
9.3.4 3D Device Simulation of Super Junction LDMOS |
|
|
264 | (1) |
|
9.3.5 3D Simulation of a Standard LDMOS with the Same N-Drift Doping |
|
|
264 | (2) |
|
9.3.6 3D Simulation of a Standard LDMOS with Reduced N -DriftDoping |
|
|
266 | (1) |
|
9.3.7 Comparison of Super Junction LDMOS and Standard LDMOS |
|
|
267 | (1) |
|
9.4 Super Junction Power FinFET |
|
|
268 | (6) |
|
9.4.1 Process Flow of the Super Junction Power FinFET |
|
|
269 | (1) |
|
9.4.2 Measurement Results of Super Junction Power FinFET |
|
|
270 | (1) |
|
9.4.3 3D Simulation of Super Junction Power FinFET |
|
|
271 | (3) |
|
9.5 Large Interconnect Simulation |
|
|
274 | (7) |
|
9.5.1 3D Process Simulation of the Large Interconnect |
|
|
275 | (5) |
|
|
276 | (1) |
|
|
276 | (1) |
|
|
277 | (1) |
|
|
277 | (1) |
|
|
277 | (2) |
|
|
279 | (1) |
|
|
279 | (1) |
|
9.5.2 3D Device Simulation of the Large Interconnect |
|
|
280 | (1) |
Chapter 10 GaN Devices, an Introduction |
|
281 | (26) |
|
10.1 Compound Materials versus Silicon |
|
|
281 | (1) |
|
10.2 Substrate Materials for GaN Devices |
|
|
282 | (1) |
|
10.3 Polarization Properties of III-Nitride Wurtzite |
|
|
283 | (4) |
|
10.3.1 Microscopic Dipoles and Polarization Vector |
|
|
283 | (1) |
|
10.3.2 Crystal Structure and Polarization |
|
|
284 | (1) |
|
10.3.3 Ideal c0/a0 Ratio for Zero Net Polarization |
|
|
284 | (3) |
|
10.3.3.1 Strain-Induced Polarization |
|
|
285 | (1) |
|
10.3.3.2 Empirical Approach to Modeling Polarization |
|
|
286 | (1) |
|
10.4 AlGaN/GaN Heterojunction |
|
|
287 | (5) |
|
10.4.1 Band Diagram Plots with a Fixed Al Mole Fraction |
|
|
288 | (1) |
|
10.4.2 Band Diagram Plots with a Fixed AlGaN Thickness |
|
|
289 | (1) |
|
10.4.3 AlGaN/GaN Structure with Doped AlGaN or GaN Layer |
|
|
289 | (2) |
|
10.4.4 AlGaN/GaN Structure with Metal Contacts |
|
|
291 | (1) |
|
10.5 Traps in AlGaN/GaN Structure |
|
|
292 | (2) |
|
10.6 A Simple AlGaN/GaN HEMT |
|
|
294 | (3) |
|
|
294 | (1) |
|
10.6.2 Id-Vg Curves for GaN HEMT |
|
|
294 | (1) |
|
|
295 | (2) |
|
10.7 GaN Power HEMT Example I |
|
|
297 | (3) |
|
|
297 | (1) |
|
10.7.2 Impact Ionization Coefficient of GaN Material |
|
|
297 | (2) |
|
10.7.3 Breakdown Simulation of GaN HEMT |
|
|
299 | (1) |
|
10.8 GaN Power HEMT Example II |
|
|
300 | (1) |
|
10.9 Gate Leakage Simulation of GaN HEMT |
|
|
301 | (4) |
|
|
301 | (1) |
|
10.9.2 Models and Simulation Setup |
|
|
301 | (1) |
|
10.9.3 Gate Leakage Simulation |
|
|
302 | (3) |
|
10.9.3.1 Pure TCAD Simulation |
|
|
302 | (2) |
|
10.9.3.2 TCAD Simulation with Slow Transient |
|
|
304 | (1) |
|
10.9.3.3 TCAD Simulation with Equivalent Circuits |
|
|
304 | (1) |
|
10.10 Market Prospect of Compound Semiconductors for Power Applications |
|
|
305 | (2) |
Appendix A: Carrier Statistics |
|
307 | (2) |
Appendix B: Process Simulation Source Code |
|
309 | (12) |
Appendix C: Trap Dynamics and AC Analysis |
|
321 | (2) |
Bibliography |
|
323 | (8) |
Index |
|
331 | |