Muutke küpsiste eelistusi

Integrated Silicon-based Optical Modulators: 100 Gb/s and Beyond [Pehme köide]

  • Formaat: Paperback / softback, 254 pages
  • Sari: Press Monographs
  • Ilmumisaeg: 01-Mar-2019
  • Kirjastus: SPIE Press
  • ISBN-10: 151062581X
  • ISBN-13: 9781510625815
Teised raamatud teemal:
  • Formaat: Paperback / softback, 254 pages
  • Sari: Press Monographs
  • Ilmumisaeg: 01-Mar-2019
  • Kirjastus: SPIE Press
  • ISBN-10: 151062581X
  • ISBN-13: 9781510625815
Teised raamatud teemal:
Ogawa (electrical engineering, Tokyo Institute of Technology) describes the properties and characteristics of integrated optical modulators as the key optical components for applications in optical network domains at 100 Gb/s and beyond with a focus on silicon-photonics platforms. Mach-Zehnder (MZ) optical modulators using the free-carrier intraband electro-refraction effect are featured because of their superior broadband spectral response and the quality of optical intensity and phase modulation for optical modulators in high capacity optical networks. Appendices list bit rates and modulation formats for optical signal transmission in high capacity optical networks and a Kramers-Kronig transformation formula. Annotation ©2019 Ringgold, Inc., Portland, OR (protoview.com)
Preface ix
Glossary of Terms xi
1 Introduction
1(8)
References
6(3)
2 Background
9(16)
2.1 High-Capacity Optical Networks
9(4)
2.1.1 Overview
9(1)
2.1.2 Basic elements
9(3)
2.1.3 Transmission capacity
12(1)
2.1.4 Energy efficiency
12(1)
2.2 Optical Modulators in High-Capacity Optical Networks
13(6)
2.2.1 Optical modulator in optical transmitter
13(2)
2.2.2 Semiconductor optical modulators
15(2)
2.2.3 Integrated optical modulators on silicon-photonics platforms
17(2)
References
19(6)
3 Introduction to Integrated Optical Modulators
25(26)
3.1 Classification of Optical Modulators
25(6)
3.1.1 Electro-absorption optical modulators
25(2)
3.1.2 Ring--resonator optical modulator using electro-refraction effects
27(1)
3.1.3 Mach--Zehnder optical modulator using electro-refraction effects
28(3)
3.2 High-Speed Broadband Mach--Zehnder Optical Modulators
31(8)
3.2.1 Mach--Zehnder interferometer with RF electrodes
31(3)
3.2.2 High-contrast intensity modulation
34(3)
3.2.3 High-Q phase modulation
37(2)
3.3 Integrated Silicon-Based Mach--Zehnder Optical Modulators
39(4)
3.3.1 Optical-waveguide elements
39(1)
3.3.2 Monolithic modulator on chip
40(2)
3.3.3 Fabrication processes
42(1)
References
43(8)
4 Optical Circuits and Waveguides in Integrated Mach--Zehnder Optical Modulators
51(34)
4.1 Optical Circuits
52(3)
4.1.1 Single Mach--Zehnder optical modulator
52(1)
4.1.2 Quadrature Mach--Zehnder optical modulator
53(1)
4.1.3 Polarization-division-multiplexed Mach--Zehnder optical modulator
54(1)
4.2 Transfer-Matrix Framework
55(3)
4.2.1 Representation in transfer matrices
55(1)
4.2.2 Transfer matrices of Mach--Zehnder optical modulators
56(2)
4.3 Optical Waveguide and Optical Mode
58(7)
4.3.1 Guided wave in ray trace
58(3)
4.3.2 Mode field and wave propagation
61(4)
4.4 Optical Waveguide Features
65(14)
4.4.1 Channel and rib waveguides
65(6)
4.4.2 Optical splitter/coupler
71(3)
4.4.3 Polarization-division multiplexer
74(4)
4.4.4 Other building blocks based on optical waveguides
78(1)
References
79(6)
5 Electronic and Opto-electronic Properties of High-Speed Phase Shifters
85(48)
5.1 Physics in Phase Modulation
85(15)
5.1.1 Pockels effect
85(2)
5.1.2 Intraband free-carrier plasma dispersion and Drude model
87(6)
5.1.3 Interband dipole transition processes
93(4)
5.1.4 Spectral and thermal characteristics
97(2)
5.1.5 Frequency chirping
99(1)
5.2 Classification of Phase Shifters using Free-Carrier Plasma Dispersion
100(4)
5.2.1 Lateral PN-junction phase shifter
100(2)
5.2.2 Vertical PN-junction phase shifter
102(2)
5.2.3 Other types of phase shifter
104(1)
5.3 Design and Modeling of PN-Junction Phase Shifters
104(17)
5.3.1 Semi-analytical method
104(7)
5.3.2 Computational method
111(6)
5.3.3 Equivalent-circuit model
117(3)
5.3.4 Remarks on designing traveling-wave electrodes
120(1)
References
121(12)
6 Optical, Electrical, and Electro-Optical Characteristics of Integrated Silicon-based Optical Modulators
133(36)
6.1 DC Optical Characteristics
133(16)
6.1.1 Optical loss
133(9)
6.1.2 Phase shift and chromatic dispersion
142(7)
6.2 DC Electrical Characteristics
149(4)
6.2.1 Current-voltage characteristics
149(3)
6.2.2 Microscopic imaging of the PN junction
152(1)
6.3 RF Frequency Characteristics
153(3)
6.3.1 S-parameter characteristics
153(2)
6.3.2 Effect of parasitics
155(1)
6.4 Transient Characteristics
156(5)
6.4.1 Response limitation by RC time constant
156(1)
6.4.2 Intensity modulation characteristics at various modulation speeds
157(2)
6.4.3 Intensity modulation characteristics at high temperatures
159(1)
6.4.4 Phase modulation characteristics and chirp parameter
160(1)
References
161(8)
7 Transmission Characteristics of Integrated Silicon-Based Optical Modulators
169(30)
7.1 Applications in Optical Network Domains at 100 Gb/s and Beyond
169(2)
7.2 On-Off Keying and Pulse Amplitude Modulation
171(6)
7.2.1 Apparatus and device for OOK transmission
171(2)
7.2.2 Characteristics of OOK transmission
173(3)
7.2.3 PAMn scheme
176(1)
7.3 Phase-Shift Keying
177(7)
7.3.1 Apparatus and device for PSK transmission
177(4)
7.3.2 Characteristics of PSK transmission
181(3)
7.4 Polarization-Division-Multiplexed Quadrature Phase-Shift Keying
184(5)
7.4.1 Apparatus and device for PDM IQ transmission
184(2)
7.4.2 Characteristics of PDM IQ transmission
186(3)
7.5 Discrete Multi-Tone Scheme
189(1)
7.5.1 Apparatus for DMT transmission
189(1)
7.5.2 Characteristics of DMT transmission
189(1)
7.6 Note on Transmission Characteristics
190(1)
References
191(8)
8 Photonic--Electronic Integration with Silicon-Based Optical Modulators
199(28)
8.1 Integration with Electronic and Photonic Devices
199(12)
8.1.1 Monolithic integration
199(2)
8.1.2 Wafer-bonding integration: silicon on silicon
201(1)
8.1.3 Die-bonding integration: III-V on silicon
201(3)
8.1.4 Hybrid integration
204(1)
8.1.5 Optical coupling and packaging
205(6)
8.2 Integration of Optical Performance Monitoring
211(8)
8.2.1 Technical background
211(1)
8.2.2 Conventional approach
212(1)
8.2.3 Optical layout for integration
213(3)
8.2.4 Photonic integrated performance-monitoring circuit
216(2)
8.2.5 All-silicon performance monitoring
218(1)
References
219(8)
Appendix
227(8)
A.1 Bit Rates and Modulation Formats in High-Capacity Optical Networks
227(5)
A.1.1 Bit rates
227(1)
A.1.2 Formats in intensity modulation
227(1)
A.1.3 Formats in phase modulation
228(3)
A.1.4 Format in sub-carrier modulation
231(1)
A.2 Kramers---Kronig Transformation
232(2)
A.2.1 General principle
232(1)
A.2.2 Computational method
233(1)
References
234(1)
Index 235