Muutke küpsiste eelistusi

Integration in Finite Terms: Fundamental Sources 2022 ed. [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 305 pages, kõrgus x laius: 235x155 mm, kaal: 641 g, VII, 305 p., 1 Hardback
  • Sari: Texts & Monographs in Symbolic Computation
  • Ilmumisaeg: 07-Jun-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030987663
  • ISBN-13: 9783030987664
  • Kõva köide
  • Hind: 159,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 188,09 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 305 pages, kõrgus x laius: 235x155 mm, kaal: 641 g, VII, 305 p., 1 Hardback
  • Sari: Texts & Monographs in Symbolic Computation
  • Ilmumisaeg: 07-Jun-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030987663
  • ISBN-13: 9783030987664
This volume gives an up-to-date review of the subject Integration in Finite Terms. The book collects four significant texts together with an extensive bibliography and commentaries discussing these works and their impact. These texts, either out of print or never published before, are fundamental to the subject of the book. Applications in combinatorics and physics have aroused a renewed interest in this well-developed area devoted to finding  solutions of differential equations and, in particular, antiderivatives, expressible in terms of classes of elementary and special functions.


Preface v
Integration in Finite Terms
1(10)
Maxwell Rosenlicht
Comments on Roseniicht's Integration in Finite Terms
11(20)
Michael F. Singer
Integration in Finite Terms: Liouville's Theory of Elementary Methods
31(106)
Joseph Fels Ritt
Comments on J.F. Ritt's Book Integration in Finite Terms
137(66)
Askold Khovanskii
On the Integration of Elementary Functions which are Built Up Using Algebraic Operations
203(18)
Robert H. Risch
Comments on Risch's On the Integration of Elementary Functions which are Built Up Using Algebraic Operations
221(14)
Clemens G. Raab
Integration of Algebraic Functions
235(62)
Barry M. Trager
Comments on Integration of Algebraic Functions
297
Barry M. Trager
Clemens G. Raab is PostDoc at Johannes Kepler University, Linz, Austria. Michael F. Singer is Professor of Mathematics, North Carolina State University, Raleigh, NC, USA.