1 Introduction |
|
1 | (4) |
|
|
1 | (1) |
|
1.2 Motivation and Challenges |
|
|
2 | (1) |
|
1.3 Objectives and Methods |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
2 Related Work |
|
5 | (16) |
|
|
5 | (1) |
|
2.2 HEV/PHEV Energy Management Strategies |
|
|
6 | (6) |
|
2.2.1 Dynamic Programming |
|
|
7 | (1) |
|
2.2.2 Pontryagin's Minimum Principle |
|
|
8 | (1) |
|
2.2.3 Model Predictive Control |
|
|
8 | (1) |
|
2.2.4 Explicit Model Predictive Control |
|
|
9 | (2) |
|
2.2.5 Control-Relevant Parameter Estimated eMPC |
|
|
11 | (1) |
|
2.2.6 Equivalent Consumption Minimization Strategy |
|
|
12 | (1) |
|
|
12 | (2) |
|
2.3.1 Adaptive Cruise Controller |
|
|
13 | (1) |
|
2.3.2 Ecological Cruise Controller |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (6) |
3 High-Fidelity Modeling of a Plug-in Hybrid Electric Powertrain |
|
21 | (24) |
|
|
21 | (1) |
|
3.2 Toyota Prius Plug-in Hybrid Powertrain |
|
|
22 | (2) |
|
3.3 High-Fidelity Model in MapleSim |
|
|
24 | (3) |
|
3.3.1 Mean-Value Internal Combustion Engine |
|
|
24 | (2) |
|
|
26 | (1) |
|
3.3.3 Lithium-Ion Battery Pack |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
27 | (7) |
|
3.4.1 Mean-Value Internal Combustion Engine |
|
|
28 | (1) |
|
|
29 | (1) |
|
3.4.3 Lithium-Ion Battery Pack |
|
|
30 | (3) |
|
|
33 | (1) |
|
|
33 | (1) |
|
3.5 High-Fidelity Model in Autonomie |
|
|
34 | (6) |
|
|
35 | (3) |
|
|
38 | (1) |
|
3.5.3 Powertrain Controller |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (5) |
Part I: Energy Management Approach |
|
|
4 Nonlinear Model Predictive Control |
|
|
45 | (34) |
|
4.1 NMPC Energy Management Design |
|
|
46 | (18) |
|
4.1.1 Theory of Model Predictive Control (MPC) |
|
|
46 | (4) |
|
4.1.2 NMPC Performance on the Low-Fidelity Powertrain Model |
|
|
50 | (9) |
|
4.1.3 NMPC Performance Benchmarking |
|
|
59 | (1) |
|
4.1.4 NMPC Performance on the High-Fidelity Powertrain Model |
|
|
60 | (4) |
|
4.2 Low-Level Controls Design |
|
|
64 | (10) |
|
4.2.1 Engine Control-Oriented Model |
|
|
65 | (2) |
|
4.2.2 Engine Controls Design |
|
|
67 | (1) |
|
4.2.3 Results of Simulation |
|
|
68 | (3) |
|
4.2.4 With Emissions Control |
|
|
71 | (3) |
|
|
74 | (1) |
|
|
75 | (4) |
|
5 Multi-parametric Predictive Control |
|
|
79 | (24) |
|
5.1 eMPC Energy Management Strategy Design |
|
|
80 | (6) |
|
5.1.1 Control-Oriented Model |
|
|
81 | (1) |
|
5.1.2 Optimization Problem Formulation |
|
|
82 | (2) |
|
|
84 | (1) |
|
5.1.4 Point Location Problem |
|
|
85 | (1) |
|
5.2 Energy Management Polytopes |
|
|
86 | (3) |
|
|
89 | (4) |
|
5.4 eMPC Performance Simulation |
|
|
93 | (5) |
|
5.4.1 No Knowledge of Trip Information |
|
|
94 | (1) |
|
5.4.2 Known Travelling Distance |
|
|
94 | (2) |
|
|
96 | (2) |
|
5.5 eMPC Performance Benchmarking via HIL |
|
|
98 | (3) |
|
|
101 | (1) |
|
|
101 | (2) |
|
6 Control-Relevant Parameter Estimated Strategy |
|
|
103 | (24) |
|
6.1 Control-Relevant Parameter Estimation (CRPE) |
|
|
103 | (5) |
|
6.1.1 Battery Thevenin Model |
|
|
104 | (1) |
|
6.1.2 Battery Parameters Estimation |
|
|
105 | (3) |
|
6.1.3 CRPE Control-Oriented Model |
|
|
108 | (1) |
|
6.2 CRPE-eMPC Energy Management Polytopes |
|
|
108 | (4) |
|
6.2.1 CRPE-eMPC Controls Regions |
|
|
109 | (1) |
|
6.2.2 CRPE-eMPC Stability Notes |
|
|
110 | (2) |
|
6.3 CRPE-eMPC Performance Simulation |
|
|
112 | (6) |
|
6.3.1 No Knowledge of Trip Information |
|
|
112 | (1) |
|
6.3.2 Known Traveling Distance |
|
|
113 | (1) |
|
|
113 | (5) |
|
6.4 CRPE-eMPC Performance Benchmarking via HIL |
|
|
118 | (4) |
|
|
122 | (1) |
|
|
123 | (4) |
Part II: Smart Ecological Supervisory Controls |
|
|
7 Real-Time Trip Planning Module Development and Evaluation |
|
|
127 | (18) |
|
7.1 Online Optimization Model |
|
|
128 | (2) |
|
7.2 Real-Time Optimization Procedure |
|
|
130 | (3) |
|
7.2.1 Dynamic Programming |
|
|
131 | (1) |
|
7.2.2 Real-Time Cluster-Based Optimization |
|
|
132 | (1) |
|
7.3 Benchmarking via MIL and HIL |
|
|
133 | (10) |
|
|
133 | (2) |
|
|
135 | (8) |
|
|
143 | (1) |
|
|
143 | (2) |
|
8 Route-Based Supervisory Controls |
|
|
145 | (24) |
|
8.1 Optimum Energy Management Development |
|
|
145 | (6) |
|
8.1.1 Pontryagin's Minimum Principle |
|
|
147 | (2) |
|
|
149 | (2) |
|
8.1.3 Level of Trip Information |
|
|
151 | (1) |
|
|
151 | (12) |
|
8.2.1 Following Standard Driving Cycles |
|
|
151 | (8) |
|
8.2.2 Comparison with MPC Controller |
|
|
159 | (4) |
|
8.3 Control Prototyping via HIL |
|
|
163 | (4) |
|
8.3.1 Controller Prototyping |
|
|
164 | (1) |
|
8.3.2 HIL Testing Results |
|
|
164 | (3) |
|
|
167 | (1) |
|
|
167 | (2) |
|
9 Ecological Cruise Control |
|
|
169 | (16) |
|
9.1 Control-Oriented Modeling |
|
|
169 | (2) |
|
|
171 | (4) |
|
9.2.1 Nonlinear Model Predictive Control |
|
|
172 | (2) |
|
9.2.2 Linear Model Predictive Control |
|
|
174 | (1) |
|
|
175 | (4) |
|
|
179 | (3) |
|
9.4.1 Controller Prototyping |
|
|
179 | (2) |
|
9.4.2 HIL Testing Results |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
182 | (3) |
|
|
185 | (6) |
|
|
185 | (1) |
|
|
186 | (1) |
|
10.3 Recommendations for Future Research |
|
|
187 | (4) |
|
|
188 | (1) |
|
10.3.2 Controls Validation |
|
|
189 | (1) |
|
|
189 | (2) |
Appendix A: Hardware-in-the-Loop Procedure |
|
191 | |