Muutke küpsiste eelistusi

Interdisciplinary Bayesian Statistics: EBEB 2014 2015 ed. [Kõva köide]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Hardback, 366 pages, kõrgus x laius: 235x155 mm, kaal: 6978 g, 45 Illustrations, color; 22 Illustrations, black and white; XVIII, 366 p. 67 illus., 45 illus. in color., 1 Hardback
  • Sari: Springer Proceedings in Mathematics & Statistics 118
  • Ilmumisaeg: 23-Mar-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319124536
  • ISBN-13: 9783319124537
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 366 pages, kõrgus x laius: 235x155 mm, kaal: 6978 g, 45 Illustrations, color; 22 Illustrations, black and white; XVIII, 366 p. 67 illus., 45 illus. in color., 1 Hardback
  • Sari: Springer Proceedings in Mathematics & Statistics 118
  • Ilmumisaeg: 23-Mar-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319124536
  • ISBN-13: 9783319124537
Teised raamatud teemal:

Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostatistics, clinical trials, law, engineering, and the social sciences. EBEB, the Brazilian Meeting on Bayesian Statistics, is held every two years by the ISBrA, the International Society for Bayesian Analysis, one of the most active chapters of the ISBA. The 12th meeting took place March 10-14, 2014 in Atibaia. Interest in foundations of inductive Statistics has grown recently in accordance with the increasing availability of Bayesian methodological alternatives. Scientists need to deal with the ever more difficult choice of the optimal method to apply to their problem. This volume shows how Bayes can be the answer. The examination and discussion on the foundations work towards the goal of proper application of Bayesian methods by the scientific community. Individual papers range in focus from posterior distributions for non-dominated models, to combining optimization and randomization approaches for the design of clinical trials, and classification of archaeological fragments with Bayesian networks.

1 What About the Posterior Distributions When the Model is Non-dominated?
1(12)
Claudio Macci
Fabio Spizzichino
2 Predictive Inference Under Exchangeability, and the Imprecise Dirichlet Multinomial Model
13(22)
Gert de Cooman
Jasper De Bock
Marcio Diniz
3 Bayesian Learning of Material Density Function by Multiple Sequential Inversions of 2-D Images in Electron Microscopy
35(14)
Dalia Chakrabarty
Shashi Paul
4 Problems with Constructing Tests to Accept the Null Hypothesis
49(6)
Andre Rogatko
Steven Piantadosi
5 Cognitive-Constructivism, Quine, Dogmas of Empiricism, and Munchhausen's Trilemma
55(14)
Julio Michael Stern
6 A Maximum Entropy Approach to Learn Bayesian Networks from Incomplete Data
69(14)
Giorgio Corani
Cassio P. de Campos
7 Bayesian Inference in Cumulative Distribution Fields
83(14)
Ricardo Silva
8 MCMC-Driven Adaptive Multiple Importance Sampling
97(14)
Luca Martino
Victor Elvira
David Luengo
Jukka Corander
9 Bayes Factors for Comparison of Restricted Simple Linear Regression Coefficients
111(14)
Viviana Giampaoli
Carlos A. B. Pereira
Heleno Bolfarine
Julio M. Singer
10 A Spanning Tree Hierarchical Model for Land Cover Classification
125(10)
Hunter Glanz
Luis Carvalho
11 Nonparametric Bayesian Regression Under Combinations of Local Shape Constraints
135(14)
Khader Khadraoui
12 A Bayesian Approach to Predicting Football Match Outcomes Considering Time Effect Weight
149(14)
Francisco Louzada
Adriano K. Suzuki
Luis E. B. Salasar
Anderson Ara
Jose G. Leite
13 Homogeneity Tests for 2 × 2 Contingency Tables
163(10)
Natalia Oliveira
Marcio Diniz
Adriano Polpo
14 Combining Optimization and Randomization Approaches for the Design of Clinical Trials
173(12)
Victor Fossaluza
Marcelo de Souza Lauretto
Carlos Alberto de Braganca Pereira
Julio Michael Stern
15 Factor Analysis with Mixture Modeling to Evaluate Coherent Patterns in Microarray Data
185(12)
Joao Daniel Nunes Duarte
Vinicius Diniz Mayrink
16 Bayesian Hypothesis Testing in Finite Populations: Bernoulli Multivariate Variables
197(10)
Brian Alvarez R. de Melo
Luis Gustavo Esteves
17 Bayesian Ridge-Regularized Covariance Selection with Community Behavior in Latent Gaussian Graphical Models
207(10)
Lijun Peng
Luis E. Carvalho
18 Bayesian Inference of Deterministic Population Growth Models
217(12)
Luiz Max Carvalho
Claudio J. Struchiner
Leonardo S. Bastos
19 A Weibull Mixture Model for the Votes of a Brazilian Political Party
229(14)
Rosineide F. da Paz
Ricardo S. Ehlers
Jorge L. Bazan
20 An Alternative Operational Risk Methodology for Regulatory Capital Calculation
243(10)
Guaraci Requena
Debora Delbem
Carlos Diniz
21 Bayesian Approach of the Exponential Poisson Logarithmic Model
253(10)
Jose Augusto Fioruci
Bao Yiqi
Francisco Louzada
Vicente G. Cancho
22 Bayesian Estimation of Birnbaum--Saunders Log-Linear Model
263(12)
Elizabeth Gonzalez Patino
23 Bayesian Weighted Information Measures
275(16)
Salimeh Yasaei Sekeh
24 Classifying the Origin of Archeological Fragments with Bayesian Networks
291(10)
Melaine Cristina de Oliveira
Andressa Soreira
Victor Fossaluza
25 A Note on Bayesian Inference for Long-Range Dependence of a Stationary Two-State Process
301(10)
Plinio L. D. Andrade
Laura L. R. Rifo
26 Bayesian Partition for Variable Selection in the Power Series Cure Rate Model
311(12)
Jhon F. B. Gonzales
Vera. L. D. Tomazella
Mario de Castro
27 Bayesian Semiparametric Symmetric Models for Binary Data
323(14)
Marcio Augusto Diniz
Carlos Alberto de Braganca Pereira
Adriano Polpo
28 Assessing a Spatial Boost Model for Quantitative Trait GWAS
337(10)
Ian Johnston
Yang Jin
Luis Carvalho
29 The Exponential-Poisson Regression Model for Recurrent Events: A Bayesian Approach
347(10)
Marcia A. C. Macera
Francisco Louzada
Vicente G. Cancho
30 Conditional Predictive Inference for Beta Regression Model with Autoregressive Errors
357
Guillermo Ferreira
Jean Paul Navarrete
Luis M. Castro
Mario de Castro