Muutke küpsiste eelistusi

Internet Optical Infrastructure: Issues on Monitoring and Failure Restoration 2015 ed. [Kõva köide]

  • Formaat: Hardback, 204 pages, kõrgus x laius: 235x155 mm, kaal: 4956 g, 9 Illustrations, color; 57 Illustrations, black and white; XIV, 204 p. 66 illus., 9 illus. in color., 1 Hardback
  • Ilmumisaeg: 03-Sep-2014
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461477379
  • ISBN-13: 9781461477372
  • Formaat: Hardback, 204 pages, kõrgus x laius: 235x155 mm, kaal: 4956 g, 9 Illustrations, color; 57 Illustrations, black and white; XIV, 204 p. 66 illus., 9 illus. in color., 1 Hardback
  • Ilmumisaeg: 03-Sep-2014
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461477379
  • ISBN-13: 9781461477372
This book covers monitoring, failure localization, and restoration in the Internet optical backbone. The authors analyze the technology in context of Internet fault management and failure recovery under the Generalized Multi-Protocol Label Switching (GMPLS).

This book covers the issues of monitoring, failure localization, and restoration in the Internet optical backbone, and focuses on the progress of state-of-the-art in both industry standard and academic research. The authors summarize, categorize, and analyze the developed technology in the context of Internet fault management and failure recovery under the Generalized Multi-Protocol Label Switching (GMPLS), via both aspects of network operations and theories.
Part I Fault Management and Failure Restoration in Survivable Optical Networks
1 Introduction to Optical Fault Management
3(12)
1.1 Design Objectives of Survivable Routing Approaches
3(2)
1.2 Survivable Network Planning Framework: Notions and Notation
5(2)
1.3 Modeling Network Faults
7(2)
1.3.1 Root Causes of Network Faults
7(1)
1.3.2 The Shared Risk Link Group Failure Model
8(1)
1.4 GMPLS-Based Recovery in Transport Networks
9(3)
1.5 GMPLS-Based Fault Management and Device Configuration
12(1)
1.6 Summary and Outlook
13(2)
References
13(2)
2 Failure Restoration Approaches
15(20)
2.1 Recovery Time Analysis
15(2)
2.2 Dedicated Protection
17(3)
2.2.1 1 + 1 Path Protection: A Widespread Protection Approach
17(2)
2.2.2 1 + 1 Realization Strategies for Better Resource Efficiency
19(1)
2.3 Shared Protection
20(7)
2.3.1 Pre-configured Protection (p-Cycles)
20(2)
2.3.2 Shared Backup Path Protection
22(1)
2.3.3 Shared Segment Protection
23(1)
2.3.4 Shared Link Protection
24(2)
2.3.5 Failure Dependent Protection
26(1)
2.4 Recovery Time Comparison of Protection Approaches
27(1)
2.5 Summary
28(7)
References
29(6)
Part II Monitoring and Failure Localization in All-Optical Networks
3 Failure Localization Via a Central Controller
35(82)
3.1 Introduction
35(5)
3.1.1 Categorization of Optical Layer Failure Localization Schemes
37(2)
3.1.2 Problem Input
39(1)
3.2 UFL for Single Failures
40(28)
3.2.1 Problem Definition
40(2)
3.2.2 Lower and Upper Bounds on the Number of (B)M-Trails
42(8)
3.2.3 An Optimal BM-Trail Solution in Densely Meshed Graphs
50(3)
3.2.4 An Optimal M-Trail Solution for Chocolate Bar Graphs
53(4)
3.2.5 An Essentially Optimal BM-Trail Solution for 2D Grid Topologies
57(4)
3.2.6 Optimal BM-Trail Solution for Circulant graphs
61(3)
3.2.7 The RCA--RCS Heuristic Approach for UFL
64(4)
3.3 UFL for Multiple Failures
68(33)
3.3.1 Problem Definition and Background
68(3)
3.3.2 Computational Complexity of UFL for Multiple Failures
71(2)
3.3.3 Optimal UFL Solution for Multiple Failures
73(6)
3.3.4 Sufficient and Necessary Conditions for SRLG UFL
79(6)
3.3.5 The Adjacent Link Failure Localization Heuristic Approach
85(4)
3.3.6 The LCC Heuristic Approach
89(5)
3.3.7 The CGT-GCS Heuristic Approach for M-Trail Allocation
94(7)
3.4 Performance Evaluation of UFL via a Central Controller
101(12)
3.4.1 Performance Evaluation of RCA--RCS for Single-Link UFL
101(4)
3.4.2 Performance Evaluation of AFL and LCC for Sparse-SRLG UFL
105(3)
3.4.3 Performance Evaluation of CGT-GCS for Dense-SRLG UFL
108(5)
3.5 Summary
113(4)
References
114(3)
4 Distributed Failure Localization
117(34)
4.1 Introduction
117(1)
4.2 Problem Definition
118(3)
4.2.1 Local Unambiguous Failure Localization
118(1)
4.2.2 An L-UFL Example
119(1)
4.2.3 State of the Art on L-UFL
119(1)
4.2.4 Network-Wide L-UFL
119(2)
4.2.5 An NL-UFL Example
121(1)
4.3 Bounds on Bandwidth Cost
121(14)
4.3.1 Lower Bound for General Graphs
122(2)
4.3.2 General Lower Bound for CGT
124(4)
4.3.3 Improved Lower Bound for Sparse Graphs
128(2)
4.3.4 Lower Bound for Dense Graphs
130(1)
4.3.5 Line Graphs
131(1)
4.3.6 Stars
132(1)
4.3.7 Complete Graphs
133(1)
4.3.8 Circulant Graphs
134(1)
4.4 The RSTA-GLS Heuristic Approach for NL-UFL
135(11)
4.4.1 Algorithm Description
135(3)
4.4.2 An Illustrative Example
138(2)
4.4.3 Performance Verification of RSTA-GLS
140(6)
4.5 Summary
146(5)
References
146(5)
Part III An All-Optical Restoration Framework with M-Trails
5 Framework Introduction
151(20)
5.1 Introduction
151(1)
5.2 Signaling-Free Restoration Framework
152(3)
5.2.1 An Example on the Restoration Process
154(1)
5.3 The Spare Capacity Allocation Problem
155(2)
5.3.1 The FDP-SCA Problem Formulation
155(2)
5.3.2 FDP Restoration Capacity Allocation
157(1)
5.4 The Monitoring Resource Hidden Property
157(3)
5.4.1 Lower Bound on the Spare Capacity
158(1)
5.4.2 Dominance of Monitoring Resources
159(1)
5.5 General Topologies with Multi-link SRLGs
160(1)
5.6 Performance Evaluation
161(8)
5.6.1 Comparison of Signaling-Free Protection Methods
161(4)
5.6.2 Monitoring Resources Hidden
165(4)
5.7 Summary
169(2)
References
169(2)
6 Global Neighborhood Failure Localization
171(16)
6.1 Introduction
171(1)
6.2 The G-NFL Scenario
172(4)
6.2.1 Introduction of G-NFL
172(1)
6.2.2 Resource Consumption by G-NFL
173(1)
6.2.3 Problem Definition
174(1)
6.2.4 Neighborhood
175(1)
6.3 Bound Analysis
176(1)
6.3.1 Lower Bound for G-NFL
176(1)
6.4 G-NFL Heuristic
177(3)
6.5 Performance Evaluation
180(4)
6.5.1 Size of Neighborhood
180(1)
6.5.2 Restoration Time Analysis
180(1)
6.5.3 Coverlength of the G-NFL Solution with FDP
181(3)
6.6 Summary
184(3)
References
185(2)
7 Dynamic Survivable Routing with M-Trails
187(16)
7.1 Spare Capacity Allocation in Dedicated and Shared Protection
187(5)
7.1.1 Suurballe's Algorithm
187(2)
7.1.2 Shared Protection
189(3)
7.2 Dynamic Joint Design Heuristic (DJH)
192(7)
7.2.1 Procedure of MtrR
194(2)
7.2.2 Generating M-Trails by GenMtr
196(3)
7.3 Summary
199(4)
References
200(3)
Index 203
Dr. Babarczi is a Research Associate at the University of Waterloo Dr. Tapolcai is an Associate Professor at Budapest University of Technology Dr. Ho is an Associate Professor at the University of Waterloo