Muutke küpsiste eelistusi

Interpolation for Normal Bundles of General Curves [Pehme köide]

  • Formaat: Paperback / softback, 105 pages, kõrgus x laius: 254x178 mm, kaal: 220 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 01-Jan-2019
  • Kirjastus: American Mathematical Society
  • ISBN-10: 147043489X
  • ISBN-13: 9781470434892
Teised raamatud teemal:
  • Formaat: Paperback / softback, 105 pages, kõrgus x laius: 254x178 mm, kaal: 220 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 01-Jan-2019
  • Kirjastus: American Mathematical Society
  • ISBN-10: 147043489X
  • ISBN-13: 9781470434892
Teised raamatud teemal:
Given $n$ general points $p_1, p_2, \ldots , p_n \in \mathbb P^r$, it is natural to ask when there exists a curve $C \subset \mathbb P^r$, of degree $d$ and genus $g$, passing through $p_1, p_2, \ldots , p_n$. In this paper, the authors give a complete answer to this question for curves $C$ with nonspecial hyperplane section. This result is a consequence of our main theorem, which states that the normal bundle $N_C$ of a general nonspecial curve of degree $d$ and genus $g$ in $\mathbb P^r$ (with $d \geq g + r$) has the property of interpolation (i.e. that for a general effective divisor $D$ of any degree on $C$, either $H^0(N_C(-D)) = 0$ or $H^1(N_C(-D)) = 0$), with exactly three exceptions.
Chapter 1 Introduction
1(4)
Chapter 2 Elementary modifications in arbitrary dimension
5(12)
Chapter 3 Elementary modifications for curves
17(4)
Chapter 4 Interpolation and short exact sequences
21(8)
Chapter 5 Elementary modifications of normal bundles
29(2)
Chapter 6 Examples of the bundles NC→λ
31(4)
Chapter 7 Interpolation and specialization
35(2)
Chapter 8 Reducible curves and their normal bundles
37(8)
Chapter 9 A stronger inductive hypothesis
45(4)
Chapter 10 Inductive arguments
49(12)
Chapter 11 Base cases
61(4)
Chapter 12 Summary of Remainder of Proof of Theorem 1.2
65(2)
Chapter 13 The three exceptional cases
67(4)
Appendix A Remainder of Proof of Theorem 1.2 71(22)
1 Compatibility with (9.1)
71(1)
2 Interpolation for rational curves
72(2)
3 Space curves
74(2)
4 Curves in low dimensional projective spaces
76(4)
5 Curves in high dimensional projective spaces
80(13)
Appendix B Code for
Chapter 4
93(10)
Acknowledgments 103(2)
Bibliography 105
Atanas Atanasov, Harvard University, Cambridge, Massachusetts.

Eric Larson, Stanford University, California.

David Yang, Massachusetts Institute of Technology, Cambridge, Massachusetts.