|
1 The organization of the book |
|
|
1 | (12) |
|
1.1 The evolution of the book |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.3 The status of scientific research |
|
|
3 | (2) |
|
1.4 A note for students on studying from a book |
|
|
5 | (1) |
|
1.5 A final note for the less able student from Ray |
|
|
6 | (1) |
|
1.6 A final note for the more able student from James |
|
|
7 | (2) |
|
1.7 Research interests of the authors |
|
|
9 | (4) |
|
|
9 | (1) |
|
|
10 | (3) |
|
Part A Special Relativity |
|
|
|
|
13 | (18) |
|
|
13 | (1) |
|
2.2 Historical background |
|
|
14 | (1) |
|
|
15 | (1) |
|
2.4 Galilean transformations |
|
|
16 | (1) |
|
2.5 The principle of special relativity |
|
|
17 | (1) |
|
2.6 The constancy of the velocity of light |
|
|
18 | (1) |
|
|
19 | (1) |
|
2.8 Relative speed of two inertial observers |
|
|
20 | (1) |
|
2.9 Composition law for velocities |
|
|
21 | (1) |
|
2.10 The relativity of simultaneity |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.13 The Lorentz transformations |
|
|
25 | (1) |
|
2.14 The four-dimensional world view |
|
|
26 | (5) |
|
|
28 | (1) |
|
|
29 | (2) |
|
3 The key attributes of special relativity |
|
|
31 | (18) |
|
3.1 Standard derivation of the Lorentz transformations |
|
|
31 | (2) |
|
3.2 Mathematical properties of Lorentz transformations |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
36 | (1) |
|
3.5 Transformation of velocities |
|
|
37 | (1) |
|
3.6 Relationship between space-time diagrams of inertial observers |
|
|
38 | (2) |
|
3.7 Acceleration in special relativity |
|
|
40 | (1) |
|
|
40 | (2) |
|
|
42 | (1) |
|
|
43 | (6) |
|
|
45 | (2) |
|
|
47 | (2) |
|
4 The elements of relativistic mechanics |
|
|
49 | (16) |
|
|
49 | (2) |
|
4.2 Isolated systems of particles in Newtonian mechanics |
|
|
51 | (1) |
|
|
52 | (2) |
|
|
54 | (3) |
|
|
57 | (8) |
|
|
59 | (2) |
|
|
61 | (4) |
|
Part B The Formalism of Tensors |
|
|
|
|
65 | (20) |
|
|
65 | (1) |
|
5.2 Manifolds and coordinates |
|
|
66 | (1) |
|
|
67 | (1) |
|
5.4 Transformation of coordinates |
|
|
68 | (3) |
|
5.5 Contravariant tensors |
|
|
71 | (1) |
|
|
72 | (2) |
|
|
74 | (1) |
|
|
75 | (1) |
|
5.9 Elementary operations with tensors |
|
|
75 | (3) |
|
5.10 Index-free interpretation of contravariant vector fields |
|
|
78 | (7) |
|
|
81 | (2) |
|
|
83 | (2) |
|
|
85 | (30) |
|
6.1 Partial derivative of a tensor |
|
|
85 | (1) |
|
|
86 | (4) |
|
6.3 The affine connection and covariant differentiation |
|
|
90 | (2) |
|
|
92 | (2) |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (4) |
|
|
100 | (1) |
|
|
101 | (2) |
|
6.10 The metric connection |
|
|
103 | (1) |
|
|
104 | (1) |
|
6.12 The curvature tensor |
|
|
105 | (2) |
|
|
107 | (8) |
|
|
108 | (4) |
|
|
112 | (3) |
|
7 Integration, variation, and symmetry |
|
|
115 | (20) |
|
|
115 | (1) |
|
7.2 The Levi-Civita alternating symbol |
|
|
116 | (1) |
|
7.3 The metric determinant |
|
|
117 | (3) |
|
7.4 Integrals and Stokes' theorem |
|
|
120 | (2) |
|
7.5 The Euler-Lagrange equations |
|
|
122 | (3) |
|
7.6 The variational method for geodesies |
|
|
125 | (3) |
|
|
128 | (7) |
|
|
130 | (2) |
|
|
132 | (3) |
|
Part C General Relativity |
|
|
|
8 Special relativity revisited |
|
|
135 | (18) |
|
|
135 | (2) |
|
|
137 | (1) |
|
|
138 | (2) |
|
|
140 | (2) |
|
8.5 An axiomatic formulation of special relativity |
|
|
142 | (2) |
|
8.6 A variational principle approach to classical mechanics |
|
|
144 | (2) |
|
8.7 A variational principle approach to relativistic mechanics |
|
|
146 | (2) |
|
8.8 Covariant formulation of relativistic mechanics |
|
|
148 | (5) |
|
|
149 | (2) |
|
|
151 | (2) |
|
9 The principles of general relativity |
|
|
153 | (18) |
|
9.1 The role of physical principles |
|
|
153 | (1) |
|
|
154 | (5) |
|
9.3 Mass in Newtonian theory |
|
|
159 | (3) |
|
9.4 The principle of equivalence |
|
|
162 | (3) |
|
9.5 The principle of general covariance |
|
|
165 | (1) |
|
9.6 The principle of minimal gravitational coupling |
|
|
165 | (1) |
|
9.7 The correspondence principle |
|
|
166 | (5) |
|
|
167 | (1) |
|
|
168 | (3) |
|
10 The field equations of general relativity |
|
|
171 | (16) |
|
10.1 Non-local lift experiments |
|
|
171 | (1) |
|
10.2 The Newtonian equation of deviation |
|
|
172 | (1) |
|
10.3 The equation of geodesic deviation |
|
|
173 | (2) |
|
10.4 The vacuum field equations of general relativity |
|
|
175 | (1) |
|
10.5 Freely falling frames |
|
|
176 | (2) |
|
10.6 The Newtonian correspondence |
|
|
178 | (4) |
|
10.7 Einstein's route to the field equations of general relativity |
|
|
182 | (2) |
|
10.8 The full field equations of general relativity |
|
|
184 | (3) |
|
|
185 | (1) |
|
|
186 | (1) |
|
11 General relativity from a variational principle |
|
|
187 | (16) |
|
11.1 The Palatini equation |
|
|
187 | (1) |
|
11.2 Differential constraints on the field equations |
|
|
188 | (1) |
|
|
189 | (1) |
|
11.4 The Einstein Lagrangian |
|
|
190 | (2) |
|
11.5 Indirect derivation of the field equations |
|
|
192 | (1) |
|
11.6 An equivalent Lagrangian |
|
|
193 | (2) |
|
11.7 The Palatini approach |
|
|
195 | (2) |
|
11.8 The full field equations |
|
|
197 | (6) |
|
|
198 | (3) |
|
|
201 | (2) |
|
12 The energy-momentum tensor |
|
|
203 | (14) |
|
|
203 | (1) |
|
|
203 | (3) |
|
12.3 The coupling constant |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
208 | (2) |
|
12.6 Potential formulation of Maxwell's equations |
|
|
210 | (1) |
|
12.7 The Maxwell energy-momentum tensor |
|
|
211 | (2) |
|
12.8 Other energy-momentum tensors |
|
|
213 | (1) |
|
12.9 The dominant energy condition |
|
|
214 | (3) |
|
|
215 | (1) |
|
|
216 | (1) |
|
13 The structure of the field equations |
|
|
217 | (22) |
|
13.1 Interpretation of the field equations |
|
|
217 | (1) |
|
13.2 Determinacy, non-linearity, and differentiability |
|
|
218 | (2) |
|
13.3 The cosmological term |
|
|
220 | (2) |
|
13.4 The conservation equations |
|
|
222 | (1) |
|
|
223 | (3) |
|
13.6 Einstein's equations as evolution equations |
|
|
226 | (3) |
|
13.7 Solving Einstein's equations in harmonic coordinates |
|
|
229 | (2) |
|
|
231 | (1) |
|
13.9 The equivalence problem |
|
|
232 | (1) |
|
13.10 The status of exact solutions |
|
|
232 | (7) |
|
|
235 | (1) |
|
|
236 | (3) |
|
14 The 3+1 and 2+2 formalisms |
|
|
239 | (30) |
|
14.1 The geometry of submanifolds |
|
|
239 | (1) |
|
|
240 | (1) |
|
14.3 The induced covariant derivative |
|
|
241 | (2) |
|
14.4 The Gauss-Codazzi equations |
|
|
243 | (2) |
|
14.5 Calculating the Gauss equation |
|
|
245 | (1) |
|
14.6 Calculating the Codazzi equation |
|
|
246 | (1) |
|
14.7 The geometry of foliations |
|
|
247 | (1) |
|
14.8 Derivation of the Ricci equation |
|
|
248 | (1) |
|
|
249 | (3) |
|
14.10 The 3+1 decomposition of the metric |
|
|
252 | (1) |
|
14.11 The 3+1 decomposition of the vacuum Einstein equations |
|
|
253 | (4) |
|
14.12 The 3+1 equations and numerical relativity |
|
|
257 | (4) |
|
14.13 The 2+2 and characteristic approaches |
|
|
261 | (2) |
|
14.14 The 2+2 metric decomposition |
|
|
263 | (6) |
|
|
266 | (2) |
|
|
268 | (1) |
|
15 The Schwarzschild solution |
|
|
269 | (20) |
|
15.1 Stationary solutions |
|
|
269 | (1) |
|
15.2 Hypersurface-orthogonal vector fields |
|
|
270 | (2) |
|
|
272 | (2) |
|
15.4 Spherically symmetric solutions |
|
|
274 | (3) |
|
15.5 The Schwarzschild solution |
|
|
277 | (2) |
|
15.6 Properties of the Schwarzschild solution |
|
|
279 | (2) |
|
15.7 Isotropic coordinates |
|
|
281 | (1) |
|
15.8 The Schwarzschild interior solution |
|
|
282 | (7) |
|
|
284 | (3) |
|
|
287 | (2) |
|
16 Classical experimental tests of general relativity |
|
|
289 | (32) |
|
|
289 | (1) |
|
16.2 Gravitational red shift |
|
|
290 | (3) |
|
16.3 The Eotvos experiment |
|
|
293 | (1) |
|
16.4 The Einstein equivalence principle |
|
|
294 | (2) |
|
16.5 Classical Kepler motion |
|
|
296 | (2) |
|
16.6 Advance of the perihelion of Mercury |
|
|
298 | (5) |
|
|
303 | (4) |
|
|
307 | (2) |
|
|
309 | (3) |
|
16.10 A chronology of experimental and observational events |
|
|
312 | (1) |
|
16.11 Rubber-sheet geometry |
|
|
313 | (8) |
|
|
315 | (3) |
|
|
318 | (3) |
|
|
|
17 Non-rotating black holes |
|
|
321 | (22) |
|
17.1 Characterization of coordinates |
|
|
321 | (2) |
|
|
323 | (1) |
|
17.3 Spatial and space-time diagrams |
|
|
324 | (1) |
|
17.4 Space-time diagram in Schwarzschild coordinates |
|
|
325 | (2) |
|
17.5 A radially infalling particle |
|
|
327 | (1) |
|
17.6 Eddington-Finkelstein coordinates |
|
|
328 | (3) |
|
|
331 | (1) |
|
|
332 | (2) |
|
17.9 A Newtonian argument |
|
|
334 | (1) |
|
17.10 Tidal forces in a black hole |
|
|
335 | (2) |
|
17.11 Observational evidence for black holes |
|
|
337 | (1) |
|
17.12 Theoretical status of black holes |
|
|
338 | (5) |
|
|
340 | (2) |
|
|
342 | (1) |
|
18 Maximal extension and conformal compactification |
|
|
343 | (12) |
|
18.1 Maximal analytic extensions |
|
|
343 | (1) |
|
18.2 The Kruskal solution |
|
|
343 | (3) |
|
18.3 The Einstein-Rosen bridge |
|
|
346 | (1) |
|
18.4 Penrose diagram for Minkowski space-time |
|
|
347 | (4) |
|
18.5 Penrose diagram for the Kruskal solution |
|
|
351 | (4) |
|
|
352 | (1) |
|
|
353 | (2) |
|
|
355 | (12) |
|
19.1 The field of a charged mass point |
|
|
355 | (2) |
|
19.2 Intrinsic and coordinate singularities |
|
|
357 | (1) |
|
19.3 Space-time diagram of the Reissner-Nordstrom solution |
|
|
358 | (2) |
|
19.4 Neutral particles in Reissner-Nordstrom space-time |
|
|
360 | (1) |
|
19.5 Penrose diagrams of the maximal analytic extensions |
|
|
361 | (6) |
|
|
364 | (2) |
|
|
366 | (1) |
|
|
367 | (34) |
|
|
367 | (2) |
|
20.2 The Kerr solution from a complex transformation |
|
|
369 | (1) |
|
20.3 The three main forms of the Kerr solution |
|
|
370 | (2) |
|
20.4 Basic properties of the Kerr solution |
|
|
372 | (2) |
|
20.5 Singularities and horizons |
|
|
374 | (3) |
|
20.6 The principal null congruences |
|
|
377 | (2) |
|
20.7 Eddington-Finkelstein coordinates |
|
|
379 | (2) |
|
20.8 The stationary limit |
|
|
381 | (1) |
|
20.9 Maximal extension for the case a2 < m2 |
|
|
382 | (2) |
|
20.10 Maximal extension for the case a2 > m2 |
|
|
384 | (1) |
|
20.11 Rotating black holes |
|
|
385 | (3) |
|
20.12 The definition of mass in general relativity |
|
|
388 | (3) |
|
20.13 The singularity theorems |
|
|
391 | (3) |
|
20.14 Black hole thermodynamics and Hawking radiation |
|
|
394 | (7) |
|
|
396 | (1) |
|
|
397 | (4) |
|
Part E Gravitational Waves |
|
|
|
21 Linearized gravitational waves and their detection |
|
|
401 | (50) |
|
21.1 The linearized field equations |
|
|
401 | (2) |
|
21.2 Gauge transformations |
|
|
403 | (2) |
|
21.3 Linearized plane gravitational waves |
|
|
405 | (4) |
|
21.4 Polarization states of plane waves |
|
|
409 | (2) |
|
21.5 S olving the wave equation |
|
|
411 | (5) |
|
21.6 The quadrupole formula |
|
|
416 | (1) |
|
21.7 The quadrupole generated by a binary star system |
|
|
417 | (3) |
|
21.8 Gravitational energy |
|
|
420 | (4) |
|
21.9 Gravitational energy-flux from a binary system |
|
|
424 | (3) |
|
21.10 Effects of gravitational radiation on the orbit of a binary system |
|
|
427 | (3) |
|
21.11 Measuring gravitational wave displacements |
|
|
430 | (5) |
|
21.12 A direct interferometric measurement |
|
|
435 | (2) |
|
21.13 The detection of gravitational waves |
|
|
437 | (3) |
|
21.14 Sources of gravitational radiation and the observation of gravitational waves |
|
|
440 | (11) |
|
|
444 | (5) |
|
|
449 | (2) |
|
22 Exact gravitational waves |
|
|
451 | (10) |
|
22.1 Gravitational waves and symmetries |
|
|
451 | (1) |
|
22.2 Einstein-Rosen waves |
|
|
451 | (3) |
|
22.3 Exact plane wave solutions |
|
|
454 | (1) |
|
22.4 Impulsive plane gravitational waves |
|
|
455 | (2) |
|
22.5 Colliding impulsive plane gravitational waves |
|
|
457 | (1) |
|
22.6 Colliding gravitational waves |
|
|
458 | (3) |
|
|
459 | (1) |
|
|
460 | (1) |
|
23 Radiation from an isolated source |
|
|
461 | (20) |
|
23.1 Radiating isolated sources |
|
|
461 | (1) |
|
23.2 Characteristic hypersurfaces of Einstein's equations |
|
|
462 | (1) |
|
23.3 Radiation coordinates |
|
|
463 | (2) |
|
23.4 Bondi's radiating metric |
|
|
465 | (2) |
|
23.5 The characteristic initial value problem |
|
|
467 | (1) |
|
|
468 | (3) |
|
23.7 The Petrov classification |
|
|
471 | (2) |
|
|
473 | (1) |
|
|
474 | (7) |
|
|
476 | (2) |
|
|
478 | (3) |
|
|
|
24 Relativistic cosmology |
|
|
481 | (30) |
|
|
481 | (2) |
|
|
483 | (1) |
|
|
484 | (3) |
|
24.4 The cosmological principle |
|
|
487 | (2) |
|
|
489 | (1) |
|
24.6 Standard models of relativistic cosmology |
|
|
490 | (2) |
|
24.7 Spaces of constant curvature |
|
|
492 | (3) |
|
24.8 The geometry of 3-spaces of constant curvature |
|
|
495 | (4) |
|
24.9 Friedmann's equation |
|
|
499 | (3) |
|
24.10 Propagation of light |
|
|
502 | (2) |
|
24.11 A cosmological definition of distance |
|
|
504 | (1) |
|
24.12 Hubble's law in relativistic cosmology |
|
|
505 | (6) |
|
|
508 | (2) |
|
|
510 | (1) |
|
25 The classical cosmological models |
|
|
511 | (28) |
|
25.1 The flat space models |
|
|
511 | (3) |
|
25.2 Models with vanishing cosmological constant |
|
|
514 | (2) |
|
25.3 Classification of Friedmann models |
|
|
516 | (3) |
|
25.4 The Einstein static model and the de Sitter model |
|
|
519 | (2) |
|
25.5 Early epochs of the universe |
|
|
521 | (1) |
|
25.6 The steady-state theory |
|
|
522 | (1) |
|
25.7 The event horizon of the de Sitter universe |
|
|
523 | (3) |
|
25.8 Particle and event horizons |
|
|
526 | (1) |
|
25.9 Lorentzian constant curvature space-times |
|
|
527 | (3) |
|
25.10 Conformal structure of Robertson-Walker space-times |
|
|
530 | (1) |
|
25.11 Conformal structure of de Sitter and anti-de Sitter space-time |
|
|
531 | (3) |
|
25.12 Our model of the universe |
|
|
534 | (5) |
|
|
535 | (2) |
|
|
537 | (2) |
|
|
539 | (56) |
|
26.1 Multi-component models |
|
|
539 | (6) |
|
26.2 Measuring the Hubble constant |
|
|
545 | (2) |
|
26.3 The cosmic microwave background radiation |
|
|
547 | (4) |
|
26.4 How heavy is the universe? |
|
|
551 | (4) |
|
26.5 The ACDM model of cosmology |
|
|
555 | (3) |
|
|
558 | (2) |
|
26.7 Inflationary cosmology |
|
|
560 | (5) |
|
26.8 The anthropic principle |
|
|
565 | (2) |
|
|
567 | (28) |
|
|
569 | (2) |
|
|
571 | (2) |
|
|
573 | (22) |
Selected bibliography |
|
595 | (4) |
Index |
|
599 | |