Muutke küpsiste eelistusi

Introduction to Analysis on Graphs [Pehme köide]

  • Formaat: Paperback / softback, 168 pages, kõrgus x laius: 254x178 mm, kaal: 285 g
  • Sari: University Lecture Series
  • Ilmumisaeg: 30-Oct-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 147044397X
  • ISBN-13: 9781470443979
Teised raamatud teemal:
  • Formaat: Paperback / softback, 168 pages, kõrgus x laius: 254x178 mm, kaal: 285 g
  • Sari: University Lecture Series
  • Ilmumisaeg: 30-Oct-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 147044397X
  • ISBN-13: 9781470443979
Teised raamatud teemal:
A central object of this book is the discrete Laplace operator on finite and infinite graphs. The eigenvalues of the discrete Laplace operator have long been used in graph theory as a convenient tool for understanding the structure of complex graphs. They can also be used in order to estimate the rate of convergence to equilibrium of a random walk (Markov chain) on finite graphs. For infinite graphs, a study of the heat kernel allows to solve the type problem-a problem of deciding whether the random walk is recurrent or transient.

This book starts with elementary properties of the eigenvalues on finite graphs, continues with their estimates and applications, and concludes with heat kernel estimates on infinite graphs and their application to the type problem. The book is suitable for beginners in the subject and accessible to undergraduate and graduate students with a background in linear algebra I and analysis I. It is based on a lecture course taught by the author and includes a wide variety of exercises. The book will help the reader to reach a level of understanding sufficient to start pursuing research in this exciting area.
Preface vii
Chapter 1 The Laplace operator on graphs
1(26)
1.1 The notion of a graph
1(4)
1.2 Cayley graphs
5(3)
1.3 Random walks
8(11)
1.4 The Laplace operator
19(3)
1.5 The Dirichlet problem
22(5)
Chapter 2 Spectral properties of the Laplace operator
27(26)
2.1 Green's formula
27(1)
2.2 Eigenvalues of the Laplace operator
28(6)
2.3 Convergence to equilibrium
34(5)
2.4 More about the eigenvalues
39(3)
2.5 Convergence to equilibrium for bipartite graphs
42(1)
2.6 Eigenvalues of Zm
43(2)
2.7 Products of graphs
45(4)
2.8 Eigenvalues and mixing time in Znm, m odd
49(2)
2.9 Eigenvalues and mixing time in a binary cube
51(2)
Chapter 3 Geometric bounds for the eigenvalues
53(20)
3.1 Cheeger's inequality
53(5)
3.2 Eigenvalues on a path graph
58(3)
3.3 Estimating λ1 via diameter
61(2)
3.4 Expansion rate
63(10)
Chapter 4 Eigenvalues on infinite graphs
73(16)
4.1 Dirichlet Laplace operator
73(3)
4.2 Cheeger's inequality
76(2)
4.3 Isoperimetric and Faber-Krahn inequalities
78(1)
4.4 Estimating λ1 (Ω) via inradius
79(3)
4.5 Isoperimetric inequalities on Cayley graphs
82(4)
4.6 Solving the Dirichlet problem by iterations
86(3)
Chapter 5 Estimates of the heat kernel
89(28)
5.1 The notion and basic properties of the heat kernel
89(2)
5.2 One-dimensional simple random walk
91(5)
5.3 Carne-Varopoulos estimate
96(3)
5.4 On-diagonal upper estimates of the heat kernel
99(8)
5.5 On-diagonal lower bound via the Dirichlet eigenvalues
107(5)
5.6 On-diagonal lower bound via volume growth
112(2)
5.7 Escape rate of random walk
114(3)
Chapter 6 The type problem
117(14)
6.1 Recurrence and transience
117(5)
6.2 Recurrence and transience on Cayley graphs
122(1)
6.3 Volume tests for recurrence
123(5)
6.4 Isoperimetric tests for transience
128(3)
Chapter 7 Exercises
131(12)
Bibliography 143(6)
Index 149
Alexander Grigor'yan, University of Bielefeld, Germany.