Preface to the Third Edition |
|
ix | |
Author |
|
xiii | |
|
I One Dimensional Dynamics |
|
|
1 | (162) |
|
1 A Visual and Historical Tour |
|
|
3 | (16) |
|
1.1 Images from Dynamical Systems |
|
|
3 | (3) |
|
1.2 A Brief History of Dynamics |
|
|
6 | (13) |
|
2 Examples of Dynamical Systems |
|
|
19 | (6) |
|
|
20 | (3) |
|
|
23 | (2) |
|
|
25 | (8) |
|
|
25 | (2) |
|
3.2 Geometric Views of Orbits |
|
|
27 | (6) |
|
|
33 | (8) |
|
4.1 Types of Periodic Points |
|
|
33 | (4) |
|
4.2 A Glimpse of Bifurcations |
|
|
37 | (4) |
|
5 An Example: The Logistic Family |
|
|
41 | (8) |
|
|
41 | (3) |
|
|
44 | (5) |
|
|
49 | (4) |
|
|
49 | (1) |
|
|
50 | (3) |
|
|
53 | (8) |
|
|
53 | (2) |
|
|
55 | (6) |
|
|
61 | (6) |
|
|
67 | (8) |
|
|
75 | (10) |
|
11 The Schwarzian Derivative |
|
|
85 | (12) |
|
|
97 | (14) |
|
12.1 Examples of Bifurcations |
|
|
97 | (5) |
|
12.2 General Bifurcation Theorems |
|
|
102 | (9) |
|
13 Another View of Period Three |
|
|
111 | (10) |
|
13.1 Subshifts of Finite Type |
|
|
111 | (2) |
|
|
113 | (8) |
|
14 The Period-Doubling Route to Chaos |
|
|
121 | (14) |
|
|
121 | (4) |
|
|
125 | (10) |
|
15 Homoclinic Points and Bifurcations |
|
|
135 | (8) |
|
|
135 | (3) |
|
15.2 Homoclinic Bifurcations |
|
|
138 | (5) |
|
|
143 | (12) |
|
|
144 | (5) |
|
|
149 | (6) |
|
17 Morse-Smale Diffeomorphisms |
|
|
155 | (8) |
|
|
163 | (128) |
|
18 Quadratic Maps Revisited |
|
|
165 | (8) |
|
|
165 | (2) |
|
|
167 | (2) |
|
|
169 | (4) |
|
19 Normal Families and Exceptional Points |
|
|
173 | (4) |
|
|
177 | (8) |
|
|
177 | (4) |
|
20.2 Critical Values in the Basins of Attraction |
|
|
181 | (4) |
|
21 Properties of the Julia Set |
|
|
185 | (6) |
|
22 The Geometry of the Julia Sets |
|
|
191 | (20) |
|
22.1 Quadratic Julia Sets |
|
|
191 | (8) |
|
22.2 A Julia Set for a Rational Map |
|
|
199 | (3) |
|
|
202 | (9) |
|
23 Neutral Periodic Points |
|
|
211 | (12) |
|
23.1 Rationally Indifferent Periodic Points |
|
|
211 | (5) |
|
23.2 Irrationally Indifferent Periodic Points |
|
|
216 | (7) |
|
|
223 | (30) |
|
24.1 Connectivity of the Julia Set |
|
|
223 | (3) |
|
|
226 | (5) |
|
24.3 Complex Bifurcations |
|
|
231 | (5) |
|
24.4 Geometry of the Principal Bulbs |
|
|
236 | (5) |
|
24.5 External Rays in the Dynamical Plane |
|
|
241 | (4) |
|
24.6 External Rays in the Parameter Plane |
|
|
245 | (8) |
|
|
253 | (22) |
|
25.1 Singular Perturbations |
|
|
253 | (1) |
|
|
254 | (2) |
|
25.3 The Escape Trichotomy |
|
|
256 | (6) |
|
25.4 The Special Case n = 2 |
|
|
262 | (5) |
|
|
267 | (8) |
|
26 The Exponential Family |
|
|
275 | (16) |
|
26.1 The Cantor Bouquet Case |
|
|
276 | (4) |
|
|
280 | (3) |
|
26.3 Indecomposable Continua |
|
|
283 | (8) |
|
III Higher Dimensional Dynamics |
|
|
291 | (94) |
|
27 Dynamics of Linear Maps |
|
|
293 | (10) |
|
27.1 Behavior of Linear Maps |
|
|
293 | (4) |
|
27.2 Stable and Unstable Subspaces |
|
|
297 | (6) |
|
28 The Smale Horseshoe Map |
|
|
303 | (10) |
|
|
306 | (7) |
|
29 Hyperbolic Toral Automorphisms |
|
|
313 | (12) |
|
29.1 Hyperbolic Toral Automorphisms |
|
|
314 | (4) |
|
|
318 | (7) |
|
|
325 | (14) |
|
|
325 | (7) |
|
30.2 The Plykin Attractor |
|
|
332 | (7) |
|
31 The Stable and Unstable Manifold Theorem |
|
|
339 | (18) |
|
32 Global Results and Hyperbolic Maps |
|
|
357 | (8) |
|
|
365 | (12) |
|
|
365 | (3) |
|
|
368 | (5) |
|
33.3 The Hopf Bifurcation Theorem |
|
|
373 | (4) |
|
|
377 | (8) |
|
A Mathematical Preliminaries |
|
|
385 | (28) |
|
A.1 Preliminaries from Calculus |
|
|
385 | (7) |
|
A.2 Preliminaries from Geometry and Topology |
|
|
392 | (2) |
|
A.3 Preliminaries from Complex Analysis |
|
|
394 | (6) |
|
A.4 Preliminaries from Linear Algebra |
|
|
400 | (13) |
Bibliography |
|
413 | (4) |
Index |
|
417 | |