Foreword by Michael W. Berry |
|
xi | |
Preface |
|
xiii | |
|
1 Introduction and motivation |
|
|
1 | (8) |
|
1.1 A way to embed ASCII documents into a finite dimensional Euclidean space |
|
|
3 | (2) |
|
1.2 Clustering and this book |
|
|
5 | (1) |
|
|
6 | (3) |
|
2 Quadratic k-means algorithm |
|
|
9 | (32) |
|
2.1 Classical batch k-means algorithm |
|
|
10 | (11) |
|
2.1.1 Quadratic distance and centroids |
|
|
12 | (1) |
|
2.1.2 Batch k-means clustering algorithm |
|
|
13 | (1) |
|
2.1.3 Batch k-means: advantages and deficiencies |
|
|
14 | (7) |
|
2.2 Incremental algorithm |
|
|
21 | (8) |
|
2.2.1 Quadratic functions |
|
|
21 | (4) |
|
2.2.2 Incremental k-means algorithm |
|
|
25 | (4) |
|
2.3 Quadratic k-means: summary |
|
|
29 | (8) |
|
2.3.1 Numerical experiments with quadratic k-means |
|
|
29 | (2) |
|
|
31 | (4) |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
38 | (3) |
|
|
41 | (10) |
|
3.1 Balanced iterative reducing and clustering algorithm |
|
|
41 | (3) |
|
|
44 | (5) |
|
|
49 | (2) |
|
4 Spherical k-means algorithm |
|
|
51 | (22) |
|
4.1 Spherical batch k-means algorithm |
|
|
51 | (6) |
|
4.1.1 Spherical batch k-means: advantages and deficiencies |
|
|
53 | (2) |
|
4.1.2 Computational considerations |
|
|
55 | (2) |
|
4.2 Spherical two-cluster partition of one-dimensional data |
|
|
57 | (7) |
|
4.2.1 One-dimensional line vs. the unit circle |
|
|
57 | (3) |
|
4.2.2 Optimal two cluster partition on the unit circle |
|
|
60 | (4) |
|
4.3 Spherical batch and incremental clustering algorithms |
|
|
64 | (8) |
|
4.3.1 First variation for spherical k-means |
|
|
65 | (3) |
|
4.3.2 Spherical incremental iterations–computations complexity |
|
|
68 | (1) |
|
4.3.3 The "ping-pong" algorithm |
|
|
69 | (2) |
|
4.3.4 Quadratic and spherical k-means |
|
|
71 | (1) |
|
|
72 | (1) |
|
5 Linear algebra techniques |
|
|
73 | (18) |
|
5.1 Two approximation problems |
|
|
73 | (1) |
|
|
74 | (3) |
|
5.3 Principal directions divisive partitioning |
|
|
77 | (10) |
|
5.3.1 Principal direction divisive partitioning (PDDP) |
|
|
77 | (3) |
|
5.3.2 Spherical principal directions divisive partitioning (sPDDP) |
|
|
80 | (2) |
|
5.3.3 Clustering with PDDP and sPDDP |
|
|
82 | (5) |
|
|
87 | (2) |
|
|
88 | (1) |
|
5.4.2 An application: hubs and authorities |
|
|
88 | (1) |
|
|
89 | (2) |
|
6 Information theoretic clustering |
|
|
91 | (10) |
|
6.1 Kullback–Leibler divergence |
|
|
91 | (3) |
|
6.2 k-means with Kullback–Leibler divergence |
|
|
94 | (2) |
|
6.3 Numerical experiments |
|
|
96 | (2) |
|
6.4 Distance between partitions |
|
|
98 | (1) |
|
|
99 | (2) |
|
7 Clustering with optimization techniques |
|
|
101 | (24) |
|
7.1 Optimization framework |
|
|
102 | (1) |
|
7.2 Smoothing k-means algorithm |
|
|
103 | (6) |
|
|
109 | (5) |
|
7.4 Numerical experiments |
|
|
114 | (8) |
|
|
122 | (3) |
|
8 k-means clustering with divergences |
|
|
125 | (30) |
|
|
125 | (3) |
|
|
128 | (4) |
|
8.3 Clustering with entropy-like distances |
|
|
132 | (3) |
|
8.4 BIRCH-type clustering with entropy-like distances |
|
|
135 | (5) |
|
8.5 Numerical experiments with (upsilon, μ) k-means |
|
|
140 | (4) |
|
8.6 Smoothing with entropy-like distances |
|
|
144 | (2) |
|
8.7 Numerical experiments with (upsilon, μ) smoka |
|
|
146 | (6) |
|
|
152 | (3) |
|
9 Assessment of clustering results |
|
|
155 | (6) |
|
|
155 | (1) |
|
|
156 | (4) |
|
|
160 | (1) |
10 Appendix: Optimization and linear algebra background |
|
161 | (18) |
|
10.1 Eigenvalues of a symmetric matrix |
|
|
161 | (2) |
|
10.2 Lagrange multipliers |
|
|
163 | (1) |
|
10.3 Elements of convex analysis |
|
|
164 | (14) |
|
10.3.1 Conjugate functions |
|
|
166 | (3) |
|
|
169 | (4) |
|
10.3.3 Asymptotic functions |
|
|
173 | (3) |
|
|
176 | (2) |
|
|
178 | (1) |
11 Solutions to selected problems |
|
179 | (10) |
Bibliography |
|
189 | (14) |
Index |
|
203 | |