Preface |
|
xv | |
List of Symbols |
|
xxv | |
List of Examples |
|
xxxiii | |
Acknowledgment |
|
xxxv | |
1 Introduction |
|
1 | (36) |
|
|
1 | (4) |
|
|
5 | (3) |
|
1.3 Composites Design Methods |
|
|
8 | (2) |
|
|
10 | (2) |
|
1.5 Design for Reliability |
|
|
12 | (15) |
|
1.5.1 Stochastic Representation |
|
|
13 | (3) |
|
1.5.2 Reliability-Based Design |
|
|
16 | (2) |
|
1.5.3 Load and Resistance Factor Design |
|
|
18 | (2) |
|
1.5.4 Determination of Resistance Factors |
|
|
20 | (1) |
|
1.5.5 Determination of Load Factors |
|
|
21 | (1) |
|
|
22 | (5) |
|
1.5.7 Limit States Design |
|
|
27 | (1) |
|
|
27 | (10) |
2 Materials |
|
37 | (48) |
|
|
38 | (1) |
|
|
39 | (9) |
|
|
39 | (1) |
|
2.2.2 Silica and Quartz Fibers |
|
|
40 | (1) |
|
|
41 | (2) |
|
|
43 | (2) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
2.3 Fiber-Matrix Compatibility |
|
|
48 | (1) |
|
|
49 | (7) |
|
2.4.1 Continuous and Discontinuous Fibers |
|
|
49 | (2) |
|
2.4.2 1D Textiles: Strand, Tow, End, Yarn, and Roving |
|
|
51 | (2) |
|
2.4.3 2D Textiles: Fabrics |
|
|
53 | (3) |
|
|
56 | (3) |
|
|
59 | (5) |
|
|
60 | (2) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
2.7 Thermoplastic Matrices |
|
|
64 | (1) |
|
2.8 Biodegradable Matrices |
|
|
64 | (1) |
|
2.9 Creep, Temperature, and Moisture |
|
|
65 | (4) |
|
2.10 Corrosion Resistance |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
71 | (14) |
3 Manufacturing Processes |
|
85 | (22) |
|
|
86 | (2) |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
90 | (2) |
|
|
92 | (1) |
|
3.6 Resin Transfer Molding |
|
|
93 | (2) |
|
3.7 Vacuum-Assisted Resin Transfer Molding |
|
|
95 | (2) |
|
|
97 | (2) |
|
|
99 | (3) |
|
3.10 Textile Manufacturing |
|
|
102 | (3) |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (1) |
|
|
105 | (2) |
4 Micromechanics |
|
107 | (44) |
|
|
108 | (5) |
|
4.1.1 Volume and Mass Fractions |
|
|
108 | (2) |
|
4.1.2 Representative Volume Element |
|
|
110 | (2) |
|
4.1.3 Heterogeneous Material |
|
|
112 | (1) |
|
4.1.4 Anisotropic Material |
|
|
112 | (1) |
|
4.1.5 Orthotropic Material |
|
|
113 | (1) |
|
4.1.6 Transversely Isotropic Material |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
113 | (10) |
|
4.2.1 Longitudinal Modulus |
|
|
114 | (2) |
|
|
116 | (1) |
|
4.2.3 In-Plane Poisson's Ratio |
|
|
117 | (1) |
|
4.2.4 In-Plane Shear Modulus |
|
|
118 | (3) |
|
4.2.5 Intralaminar Shear Modulus |
|
|
121 | (1) |
|
4.2.6 Restrictions on the Elastic Constants |
|
|
122 | (1) |
|
4.3 Moisture and Thermal Expansion |
|
|
123 | (4) |
|
|
123 | (2) |
|
|
125 | (1) |
|
4.3.3 Transport Properties |
|
|
126 | (1) |
|
4.4 Temperature-Dependent Properties |
|
|
127 | (4) |
|
4.4.1 Micromechanics of CTE |
|
|
127 | (1) |
|
4.4.2 Temperature Dependence |
|
|
128 | (3) |
|
|
131 | (16) |
|
4.5.1 Longitudinal Tensile Strength |
|
|
132 | (3) |
|
4.5.2 Longitudinal Compressive Strength |
|
|
135 | (1) |
|
4.5.3 Transverse Tensile Strength |
|
|
136 | (1) |
|
4.5.4 Mode I Fracture Toughness |
|
|
137 | (2) |
|
4.5.5 In-Plane Shear Strength |
|
|
139 | (2) |
|
4.5.6 Mode II Fracture Toughness |
|
|
141 | (1) |
|
4.5.7 Transverse Compressive Strength |
|
|
142 | (1) |
|
4.5.8 Mohr-Coulomb Failure |
|
|
142 | (4) |
|
4.5.9 Intralaminar Shear Strength |
|
|
146 | (1) |
|
|
147 | (4) |
5 Ply Mechanics |
|
151 | (22) |
|
|
151 | (1) |
|
|
151 | (5) |
|
|
152 | (3) |
|
|
155 | (1) |
|
5.3 Stress-Strain Equations |
|
|
156 | (5) |
|
|
161 | (9) |
|
5.4.1 Coordinate Transformations |
|
|
161 | (1) |
|
5.4.2 Stress and Strain Transformations |
|
|
162 | (4) |
|
5.4.3 Stiffness and Compliance Transformations |
|
|
166 | (3) |
|
5.4.4 Specially Orthotropic Lamina |
|
|
169 | (1) |
|
|
170 | (3) |
6 Macromechanics |
|
173 | (54) |
|
6.1 Plate Stiffness and Compliance |
|
|
174 | (11) |
|
|
174 | (2) |
|
|
176 | (3) |
|
|
179 | (1) |
|
6.1.4 Plate Stiffness and Compliance |
|
|
180 | (5) |
|
6.2 Computation of Stresses |
|
|
185 | (2) |
|
6.3 Common Laminate Types |
|
|
187 | (9) |
|
6.3.1 Laminate Description |
|
|
187 | (1) |
|
6.3.2 Symmetric Laminates |
|
|
188 | (1) |
|
6.3.3 Antisymmetric Laminate |
|
|
189 | (1) |
|
|
189 | (1) |
|
6.3.5 Quasi-isotropic Laminates |
|
|
190 | (3) |
|
|
193 | (1) |
|
|
194 | (1) |
|
6.3.8 Specially Orthotropic Laminate |
|
|
194 | (2) |
|
|
196 | (3) |
|
6.4.1 Trace-Normalized Moduli |
|
|
197 | (2) |
|
6.5 Universal Carpet Plots |
|
|
199 | (14) |
|
|
204 | (1) |
|
6.5.2 Membrane-Controlled design |
|
|
205 | (5) |
|
6.5.3 Bending-Controlled design |
|
|
210 | (3) |
|
|
213 | (8) |
|
|
221 | (6) |
7 Strength |
|
227 | (56) |
|
7.1 Lamina Failure Criteria |
|
|
230 | (13) |
|
|
230 | (1) |
|
7.1.2 Maximum Stress Criterion |
|
|
231 | (2) |
|
7.1.3 Maximum Strain Criterion |
|
|
233 | (3) |
|
7.1.4 Interacting Failure Criterion |
|
|
236 | (6) |
|
7.1.5 Hygrothermal Failure |
|
|
242 | (1) |
|
|
243 | (9) |
|
|
246 | (6) |
|
|
252 | (9) |
|
|
252 | (3) |
|
7.3.2 Truncated-Maximum-Strain Criterion |
|
|
255 | (6) |
|
|
261 | (10) |
|
7.4.1 Universal Carpet Plots: In-Plane Strength |
|
|
262 | (9) |
|
7.5 Stress Concentrations |
|
|
271 | (7) |
|
7.5.1 Notched Plate under In-Plane Load |
|
|
273 | (5) |
|
|
278 | (5) |
8 Damage |
|
283 | (20) |
|
8.1 Continuum Damage Mechanics |
|
|
283 | (2) |
|
8.2 Longitudinal Tensile Damage |
|
|
285 | (3) |
|
8.3 Longitudinal Compressive Damage |
|
|
288 | (4) |
|
8.4 Transverse Tension and In-Plane Shear |
|
|
292 | (9) |
|
|
295 | (1) |
|
|
295 | (1) |
|
|
296 | (1) |
|
|
297 | (1) |
|
8.4.5 Laminate Reduced Stiffness |
|
|
297 | (1) |
|
8.4.6 Lamina Reduced Stiffness |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
300 | (1) |
|
8.4.10 Laminate Iterations |
|
|
300 | (1) |
|
|
301 | (2) |
9 Fabric-reinforced Composites |
|
303 | (48) |
|
9.1 Weave Pattern Description |
|
|
303 | (4) |
|
|
307 | (3) |
|
|
310 | (5) |
|
9.4 Element Stiffness and Constitutive Relationship |
|
|
315 | (3) |
|
9.4.1 Bending-Restrained Model |
|
|
315 | (2) |
|
9.4.2 Bending-Allowed Model |
|
|
317 | (1) |
|
|
318 | (3) |
|
|
318 | (1) |
|
9.5.2 Thermal and Moisture Expansion Coefficients |
|
|
319 | (2) |
|
|
321 | (10) |
|
|
321 | (2) |
|
9.6.2 Damage Initiation, Evolution, and Fracture |
|
|
323 | (4) |
|
9.6.3 Cross-Ply Approximation |
|
|
327 | (4) |
|
9.7 Woven Fabrics with Gap |
|
|
331 | (2) |
|
|
333 | (8) |
|
9.8.1 Twill Weave with ng > 2, ns = ni = 1 |
|
|
334 | (3) |
|
9.8.2 Twill Weave with ns = 1 |
|
|
337 | (1) |
|
9.8.3 Satin Weave with ni = 1 |
|
|
338 | (2) |
|
9.8.4 Twill and Satin Thermo-Elastic Properties |
|
|
340 | (1) |
|
9.9 Randomly Oriented Reinforcement |
|
|
341 | (3) |
|
|
342 | (1) |
|
|
343 | (1) |
|
|
344 | (7) |
10 Beams |
|
351 | (48) |
|
|
353 | (9) |
|
10.1.1 Design for Deflections |
|
|
356 | (1) |
|
10.1.2 Design for Strength |
|
|
357 | (2) |
|
10.1.3 Design for Buckling |
|
|
359 | (1) |
|
|
360 | (2) |
|
|
362 | (34) |
|
10.2.1 Wall Constitutive Equations |
|
|
366 | (2) |
|
10.2.2 Neutral Axis of Bending and Torsion |
|
|
368 | (2) |
|
|
370 | (1) |
|
10.2.4 Mechanical Center of Gravity |
|
|
371 | (1) |
|
|
372 | (6) |
|
10.2.6 Torsional Stiffness |
|
|
378 | (2) |
|
10.2.7 Shear of Open Sections |
|
|
380 | (9) |
|
10.2.8 Shear of Single-Cell Closed Section |
|
|
389 | (2) |
|
|
391 | (1) |
|
10.2.10 Segment Deformations and Stresses |
|
|
392 | (3) |
|
10.2.11 Restrained Warping of Open Sections |
|
|
395 | (1) |
|
|
396 | (3) |
11 Plates and Stiffened Panels |
|
399 | (24) |
|
|
400 | (3) |
|
11.1.1 Universal Carpet Plots: Flexural Strength |
|
|
400 | (3) |
|
|
403 | (5) |
|
11.2.1 All Edges Simply Supported |
|
|
404 | (2) |
|
|
406 | (1) |
|
|
406 | (1) |
|
|
407 | (1) |
|
11.2.5 Fixed Unloaded Edges |
|
|
407 | (1) |
|
|
408 | (12) |
|
11.3.1 Stiffened Panels under Bending Loads |
|
|
409 | (5) |
|
11.3.2 Stiffened Panel under In-Plane Loads |
|
|
414 | (6) |
|
|
420 | (3) |
12 Shells |
|
423 | (20) |
|
12.1 Shells of Revolution |
|
|
425 | (9) |
|
|
426 | (8) |
|
12.2 Cylindrical Shells with General Loading |
|
|
434 | (6) |
|
|
440 | (3) |
13 Strengthening of Reinforced Concrete |
|
443 | (58) |
|
13.1 Strengthening Design |
|
|
445 | (2) |
|
|
447 | (2) |
|
|
448 | (1) |
|
13.2.2 Steel Reinforcement |
|
|
449 | (1) |
|
|
449 | (1) |
|
13.3 Flexural Strengthening of RC Beams |
|
|
449 | (20) |
|
13.3.1 Unstrengthened Behavior |
|
|
450 | (1) |
|
13.3.2 Strengthened Behavior |
|
|
450 | (1) |
|
|
451 | (2) |
|
13.3.4 Strong Strengthening Configuration (SSC) |
|
|
453 | (2) |
|
13.3.5 Weak Strengthening Configuration (WSC) |
|
|
455 | (2) |
|
13.3.6 Balanced Strengthening Configuration (BSC) |
|
|
457 | (1) |
|
13.3.7 Serviceability Limit States |
|
|
458 | (6) |
|
13.3.8 Summary Design Procedure: Bending |
|
|
464 | (5) |
|
|
469 | (7) |
|
13.4.1 Summary Design Procedure: Shear |
|
|
473 | (3) |
|
|
476 | (22) |
|
13.5.1 Column: Pure Axial Compression |
|
|
477 | (3) |
|
13.5.2 Summary Design Procedure: Column |
|
|
480 | (3) |
|
13.5.3 Beam-Column: Combined Axial Compression and Bending |
|
|
483 | (6) |
|
13.5.4 Summary Verification Procedure: Beam-Column |
|
|
489 | (9) |
|
|
498 | (3) |
Appendix A |
|
501 | (10) |
|
A.1 SCILAB Code for Classical Lamination Theory |
|
|
501 | (1) |
|
A.2 Periodic Microstructure Micromechanics |
|
|
501 | (3) |
|
A.3 Longitudinal Compressive Strength |
|
|
504 | (7) |
Bibliography |
|
511 | (14) |
Index |
|
525 | |