Muutke küpsiste eelistusi

Introduction to Composite Materials Design 3rd edition [Kõva köide]

(West Virginia University, Morgantown, USA)
  • Formaat: Hardback, 534 pages, kõrgus x laius: 254x178 mm, kaal: 1210 g, 177 Illustrations, black and white
  • Sari: Composite Materials
  • Ilmumisaeg: 16-Oct-2017
  • Kirjastus: CRC Press
  • ISBN-10: 1138196800
  • ISBN-13: 9781138196803
Teised raamatud teemal:
  • Kõva köide
  • Hind: 102,90 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 145,80 €
  • Säästad 29%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 534 pages, kõrgus x laius: 254x178 mm, kaal: 1210 g, 177 Illustrations, black and white
  • Sari: Composite Materials
  • Ilmumisaeg: 16-Oct-2017
  • Kirjastus: CRC Press
  • ISBN-10: 1138196800
  • ISBN-13: 9781138196803
Teised raamatud teemal:
The third edition of Introduction to Composite MaterialsDesign is a practical, design-oriented textbook aimed at students and practicing engineers learning analysis and design of composite materials and structures. Readers will find the third edition to be both highly streamlined for teaching, with new comprehensive examples and exercises emphasizing design, as well as complete with practical content relevant to current industry needs. Furthermore, the third edition is updated with the latest analysis techniques for the preliminary design of composite materials, including universal carpet plots, temperature dependent properties, and more. Significant additions provide the essential tools for mastering Design for Reliability as well as an expanded material property database.

Arvustused

"I have found this book easy to teach from, but better yet, the students have found it easy to learn from. The material is logically presented, and flows easily though the development of new concepts for advanced students. Concepts of design utilizing the developed mechanics topics are extremely well integrated." David Miller, Montana State University, USA

"Remarkable facility of the author to touch all the most relevant aspects deep enough to give the reader the adequate information, but not too extensively to make it boring or to transform it in those kind of books that one refers to only for the formulas; and the how he managed to connect the book to the real world industry examples, processes and methods, which is not so commonly found in other books." Diego Rodriguez, FACC Operations GmbH, Austria

"The CADEC software that is integrated with the text was a major consideration in my selection of this book for my course. I have found it to be an invaluable instructional tool that complements the book and provides the students with the capability to explore various design scenarios with relative ease, while not compromising understanding of the fundamentals underpinning the software." Richard K. Kunz, Mercer University, Macon, Georgia, USA

"The book is a self-contained set of valuable information of this specific topic that is written in a simple and clear manner, making it accessible to minor and major students of mechanical and material engineering." Rui A.S. Moreira, University of Aveiro, Portugal

"I have no doubt that the Third edition of this textbook will help the new generation of readers to gain a better understanding of material selection, fabrication, material behaviour and structural analysis involved in design of composite structures." Maria Kashtalyan, University of Aberdeen, UK

Preface xv
List of Symbols xxv
List of Examples xxxiii
Acknowledgment xxxv
1 Introduction 1(36)
1.1 Basic Concepts
1(4)
1.2 Design Process
5(3)
1.3 Composites Design Methods
8(2)
1.4 Fracture Mechanics
10(2)
1.5 Design for Reliability
12(15)
1.5.1 Stochastic Representation
13(3)
1.5.2 Reliability-Based Design
16(2)
1.5.3 Load and Resistance Factor Design
18(2)
1.5.4 Determination of Resistance Factors
20(1)
1.5.5 Determination of Load Factors
21(1)
1.5.6 Basis Values
22(5)
1.5.7 Limit States Design
27(1)
Problems
27(10)
2 Materials 37(48)
2.1 Fiber Reinforcements
38(1)
2.2 Fiber Types
39(9)
2.2.1 Glass Fibers
39(1)
2.2.2 Silica and Quartz Fibers
40(1)
2.2.3 Carbon Fibers
41(2)
2.2.4 Carbon Nanotubes
43(2)
2.2.5 Organic Fibers
45(1)
2.2.6 Boron Fibers
46(1)
2.2.7 Ceramic Fibers
46(1)
2.2.8 Basalt Fibers
46(1)
2.2.9 Metallic Fibers
47(1)
2.2.10 Natural Fibers
47(1)
2.3 Fiber-Matrix Compatibility
48(1)
2.4 Fiber Forms
49(7)
2.4.1 Continuous and Discontinuous Fibers
49(2)
2.4.2 1D Textiles: Strand, Tow, End, Yarn, and Roving
51(2)
2.4.3 2D Textiles: Fabrics
53(3)
2.5 Matrix Materials
56(3)
2.6 Thermoset Matrices
59(5)
2.6.1 Polyester Resins
60(2)
2.6.2 Vinyl Ester Resins
62(1)
2.6.3 Epoxy Resins
62(1)
2.6.4 Phenolic Resins
63(1)
2.7 Thermoplastic Matrices
64(1)
2.8 Biodegradable Matrices
64(1)
2.9 Creep, Temperature, and Moisture
65(4)
2.10 Corrosion Resistance
69(1)
2.11 Flammability
70(1)
Problems
71(14)
3 Manufacturing Processes 85(22)
3.1 Hand Layup
86(2)
3.2 Prepreg Layup
88(1)
3.3 Bag Molding
89(1)
3.4 Autoclave Processing
90(2)
3.5 Compression Molding
92(1)
3.6 Resin Transfer Molding
93(2)
3.7 Vacuum-Assisted Resin Transfer Molding
95(2)
3.8 Pultrusion
97(2)
3.9 Filament Winding
99(3)
3.10 Textile Manufacturing
102(3)
3.10.1 Woven Fabrics
102(1)
3.10.2 Knitted Fabrics
103(1)
3.10.3 Braid Fabrics
104(1)
3.10.4 Stitched Fabrics
104(1)
Problems
105(2)
4 Micromechanics 107(44)
4.1 Basic Concepts
108(5)
4.1.1 Volume and Mass Fractions
108(2)
4.1.2 Representative Volume Element
110(2)
4.1.3 Heterogeneous Material
112(1)
4.1.4 Anisotropic Material
112(1)
4.1.5 Orthotropic Material
113(1)
4.1.6 Transversely Isotropic Material
113(1)
4.1.7 Isotropic Material
113(1)
4.2 Stiffness
113(10)
4.2.1 Longitudinal Modulus
114(2)
4.2.2 Transverse Modulus
116(1)
4.2.3 In-Plane Poisson's Ratio
117(1)
4.2.4 In-Plane Shear Modulus
118(3)
4.2.5 Intralaminar Shear Modulus
121(1)
4.2.6 Restrictions on the Elastic Constants
122(1)
4.3 Moisture and Thermal Expansion
123(4)
4.3.1 Thermal Expansion
123(2)
4.3.2 Moisture Expansion
125(1)
4.3.3 Transport Properties
126(1)
4.4 Temperature-Dependent Properties
127(4)
4.4.1 Micromechanics of CTE
127(1)
4.4.2 Temperature Dependence
128(3)
4.5 Strength
131(16)
4.5.1 Longitudinal Tensile Strength
132(3)
4.5.2 Longitudinal Compressive Strength
135(1)
4.5.3 Transverse Tensile Strength
136(1)
4.5.4 Mode I Fracture Toughness
137(2)
4.5.5 In-Plane Shear Strength
139(2)
4.5.6 Mode II Fracture Toughness
141(1)
4.5.7 Transverse Compressive Strength
142(1)
4.5.8 Mohr-Coulomb Failure
142(4)
4.5.9 Intralaminar Shear Strength
146(1)
Problems
147(4)
5 Ply Mechanics 151(22)
5.1 Coordinate Systems
151(1)
5.2 Stress and Strain
151(5)
5.2.1 Stress
152(3)
5.2.2 Strain
155(1)
5.3 Stress-Strain Equations
156(5)
5.4 Off-Axis Stiffness
161(9)
5.4.1 Coordinate Transformations
161(1)
5.4.2 Stress and Strain Transformations
162(4)
5.4.3 Stiffness and Compliance Transformations
166(3)
5.4.4 Specially Orthotropic Lamina
169(1)
Problems
170(3)
6 Macromechanics 173(54)
6.1 Plate Stiffness and Compliance
174(11)
6.1.1 Assumptions
174(2)
6.1.2 Strains
176(3)
6.1.3 Stress Resultants
179(1)
6.1.4 Plate Stiffness and Compliance
180(5)
6.2 Computation of Stresses
185(2)
6.3 Common Laminate Types
187(9)
6.3.1 Laminate Description
187(1)
6.3.2 Symmetric Laminates
188(1)
6.3.3 Antisymmetric Laminate
189(1)
6.3.4 Balanced Laminate
189(1)
6.3.5 Quasi-isotropic Laminates
190(3)
6.3.6 Cross-Ply Laminate
193(1)
6.3.7 Angle-Ply Laminate
194(1)
6.3.8 Specially Orthotropic Laminate
194(2)
6.4 Laminate Moduli
196(3)
6.4.1 Trace-Normalized Moduli
197(2)
6.5 Universal Carpet Plots
199(14)
6.5.1 Homogenization
204(1)
6.5.2 Membrane-Controlled design
205(5)
6.5.3 Bending-Controlled design
210(3)
6.6 Hygrothermal Stress
213(8)
Problems
221(6)
7 Strength 227(56)
7.1 Lamina Failure Criteria
230(13)
7.1.1 Strength Ratio
230(1)
7.1.2 Maximum Stress Criterion
231(2)
7.1.3 Maximum Strain Criterion
233(3)
7.1.4 Interacting Failure Criterion
236(6)
7.1.5 Hygrothermal Failure
242(1)
7.2 First Ply Failure
243(9)
7.2.1 In Situ Strength
246(6)
7.3 Last Ply Failure
252(9)
7.3.1 Ply Discount
252(3)
7.3.2 Truncated-Maximum-Strain Criterion
255(6)
7.4 Laminate Strength
261(10)
7.4.1 Universal Carpet Plots: In-Plane Strength
262(9)
7.5 Stress Concentrations
271(7)
7.5.1 Notched Plate under In-Plane Load
273(5)
Problems
278(5)
8 Damage 283(20)
8.1 Continuum Damage Mechanics
283(2)
8.2 Longitudinal Tensile Damage
285(3)
8.3 Longitudinal Compressive Damage
288(4)
8.4 Transverse Tension and In-Plane Shear
292(9)
8.4.1 Limitations
295(1)
8.4.2 Approximations
295(1)
8.4.3 Displacement Field
296(1)
8.4.4 Strain Field
297(1)
8.4.5 Laminate Reduced Stiffness
297(1)
8.4.6 Lamina Reduced Stiffness
297(1)
8.4.7 Fracture Energy
298(1)
8.4.8 Solution Algorithm
299(1)
8.4.9 Lamina Iterations
300(1)
8.4.10 Laminate Iterations
300(1)
Problems
301(2)
9 Fabric-reinforced Composites 303(48)
9.1 Weave Pattern Description
303(4)
9.2 Analysis
307(3)
9.3 Tow Properties
310(5)
9.4 Element Stiffness and Constitutive Relationship
315(3)
9.4.1 Bending-Restrained Model
315(2)
9.4.2 Bending-Allowed Model
317(1)
9.5 Laminate Properties
318(3)
9.5.1 Elastic Constants
318(1)
9.5.2 Thermal and Moisture Expansion Coefficients
319(2)
9.6 Failure Analysis
321(10)
9.6.1 Stress Analysis
321(2)
9.6.2 Damage Initiation, Evolution, and Fracture
323(4)
9.6.3 Cross-Ply Approximation
327(4)
9.7 Woven Fabrics with Gap
331(2)
9.8 Twill and Satin
333(8)
9.8.1 Twill Weave with ng > 2, ns = ni = 1
334(3)
9.8.2 Twill Weave with ns = 1
337(1)
9.8.3 Satin Weave with ni = 1
338(2)
9.8.4 Twill and Satin Thermo-Elastic Properties
340(1)
9.9 Randomly Oriented Reinforcement
341(3)
9.9.1 Elastic Moduli
342(1)
9.9.2 Strength
343(1)
Problems
344(7)
10 Beams 351(48)
10.1 Preliminary Design
353(9)
10.1.1 Design for Deflections
356(1)
10.1.2 Design for Strength
357(2)
10.1.3 Design for Buckling
359(1)
10.1.4 Column Behavior
360(2)
10.2 Thin-Walled Beams
362(34)
10.2.1 Wall Constitutive Equations
366(2)
10.2.2 Neutral Axis of Bending and Torsion
368(2)
10.2.3 Axial Stiffness
370(1)
10.2.4 Mechanical Center of Gravity
371(1)
10.2.5 Bending Stiffness
372(6)
10.2.6 Torsional Stiffness
378(2)
10.2.7 Shear of Open Sections
380(9)
10.2.8 Shear of Single-Cell Closed Section
389(2)
10.2.9 Beam Deformations
391(1)
10.2.10 Segment Deformations and Stresses
392(3)
10.2.11 Restrained Warping of Open Sections
395(1)
Problems
396(3)
11 Plates and Stiffened Panels 399(24)
11.1 Plate Bending
400(3)
11.1.1 Universal Carpet Plots: Flexural Strength
400(3)
11.2 Plate Buckling
403(5)
11.2.1 All Edges Simply Supported
404(2)
11.2.2 All Sides Clamped
406(1)
11.2.3 One Free Edge
406(1)
11.2.4 Biaxial Loading
407(1)
11.2.5 Fixed Unloaded Edges
407(1)
11.3 Stiffened Panels
408(12)
11.3.1 Stiffened Panels under Bending Loads
409(5)
11.3.2 Stiffened Panel under In-Plane Loads
414(6)
Problems
420(3)
12 Shells 423(20)
12.1 Shells of Revolution
425(9)
12.1.1 Symmetric Loading
426(8)
12.2 Cylindrical Shells with General Loading
434(6)
Problems
440(3)
13 Strengthening of Reinforced Concrete 443(58)
13.1 Strengthening Design
445(2)
13.2 Materials
447(2)
13.2.1 Concrete
448(1)
13.2.2 Steel Reinforcement
449(1)
13.2.3 FRP
449(1)
13.3 Flexural Strengthening of RC Beams
449(20)
13.3.1 Unstrengthened Behavior
450(1)
13.3.2 Strengthened Behavior
450(1)
13.3.3 Analysis
451(2)
13.3.4 Strong Strengthening Configuration (SSC)
453(2)
13.3.5 Weak Strengthening Configuration (WSC)
455(2)
13.3.6 Balanced Strengthening Configuration (BSC)
457(1)
13.3.7 Serviceability Limit States
458(6)
13.3.8 Summary Design Procedure: Bending
464(5)
13.4 Shear Strengthening
469(7)
13.4.1 Summary Design Procedure: Shear
473(3)
13.5 Beam-Column
476(22)
13.5.1 Column: Pure Axial Compression
477(3)
13.5.2 Summary Design Procedure: Column
480(3)
13.5.3 Beam-Column: Combined Axial Compression and Bending
483(6)
13.5.4 Summary Verification Procedure: Beam-Column
489(9)
Exercises
498(3)
Appendix A 501(10)
A.1 SCILAB Code for Classical Lamination Theory
501(1)
A.2 Periodic Microstructure Micromechanics
501(3)
A.3 Longitudinal Compressive Strength
504(7)
Bibliography 511(14)
Index 525
Ever J. Barbero is Professor, Mechanical and Aerospace Engineering, College of Engineering and Mineral Resources at West Virginia University. Prof. Barbero, ASME Fellow and SAMPE Fellow, is recognized internationally for his work on material models for composite materials. He is the author of 3 textbooks: Introduction to Composite Materials Design , Taylor & Francis (First Edition 1999; Second Edition 2010), Finite Element Analysis of Composite Materials Using Abaqus , Taylor & Francis (2013), and Finite Element Analysis of Composite Materials Using ANSYS, Taylor & Francis (First Edition 2007; Second Edition 2013). He has authored several book chapters, over 100 peer-reviewed publications, and numerous conference papers and has been the mentor of numerous MS and Ph.D. graduates currently serving in leadership positions in academia and industry worldwide. He holds two US Patents, #6,455,131 (2002) and #6,544,624 (2003). He received the AE Alumni Academy Award for Outstanding Teaching (1999) and numerous research awards. As former department chair, he led the department in accomplishing ABET accreditation twice, as well as substantial growth of all productivity including research expenditures and undergraduate and doctoral enrollment. Eleven new faculty were added to the department in the period 20022009.