Muutke küpsiste eelistusi

Introduction to Cryptography with Coding Theory [Kõva köide]

  • Formaat: Hardback, 504 pages, kõrgus x laius x paksus: 240x182x24 mm, kaal: 890 g
  • Ilmumisaeg: 14-Feb-2002
  • Kirjastus: Pearson
  • ISBN-10: 0130618144
  • ISBN-13: 9780130618146
Teised raamatud teemal:
  • Kõva köide
  • Hind: 62,64 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 504 pages, kõrgus x laius x paksus: 240x182x24 mm, kaal: 890 g
  • Ilmumisaeg: 14-Feb-2002
  • Kirjastus: Pearson
  • ISBN-10: 0130618144
  • ISBN-13: 9780130618146
Teised raamatud teemal:
This text is for a course in cryptography for advanced undergraduate and graduate students. Material is accessible to mathematically mature students having little background in number theory and computer programming. Core material is treated in the first eight chapters on areas such as classical cryptosystems, basic number theory, the RSA algorithm, and digital signatures. The remaining nine chapters cover optional topics including secret sharing schemes, games, and information theory. Appendices contain computer examples in Mathematica, Maple, and MATLAB. The text can be taught without computers. Trappe teaches in the Department of Electrical and Computer Engineering, and Washington teaches in the Department of Mathematics, at the University of Maryland. Annotation c. Book News, Inc., Portland, OR (booknews.com)

This book assumes a minimal background in programming and a level of math sophistication equivalent to a course in linear algebra. It provides a flexible organization, as each chapter is modular and can be covered in any order. Using Mathematica, Maple, and MATLAB, computer examples included in an Appendix explain how to do computation and demonstrate important concepts. A full chapter on error correcting codes introduces the basic elements of coding theory. Other topics covered: Classical cryptosystems, basic number theory, the data encryption standard, AES: Rijndael, the RSA algorithm, discrete logarithms, digital signatures, e-commerce and digital cash, secret sharing schemes, games, zero knowledge techniques, key establishment protocols, information theory, elliptic curves, error correcting codes, quantum cryptography. For professionals in cryptography and network security.
Preface xi
Overview
1(11)
Secure Communications
2(7)
Cryptographic Applications
9(3)
Classical Cryptosystems
12(47)
Shift Ciphers
13(1)
Affine Ciphers
14(2)
The Vigenere Cipher
16(7)
Substitution Ciphers
23(3)
Sherlock Holmes
26(3)
The Playfair and ADFGX Ciphers
29(4)
Block Ciphers
33(4)
Binary Numbers and ASCII
37(1)
One-Time Pads
38(2)
Pseudo-random Bit Generation
40(2)
Linear Feedback Shift Register Sequences
42(7)
Enigma
49(5)
Exercises
54(2)
Computer Problems
56(3)
Basic Number Theory
59(38)
Basic Notions
59(6)
Solving ax + by = d
65(1)
Congruences
66(6)
The Chinese Remainder Theorem
72(2)
Modular Exponentiation
74(1)
Fermat and Euler
75(4)
Primitive Roots
79(1)
Inverting Matrices Mod n
80(1)
Square Roots Mod n
81(2)
Finite Fields
83(8)
Exercises
91(4)
Computer Problems
95(2)
The Data Encryption Standard
97(30)
Introduction
97(1)
A Simplified DES-Type Algorithm
98(4)
Differential Cryptanalysis
102(5)
DES
107(8)
Models of Operation
115(3)
Breaking DES
118(5)
Password Security
123(2)
Exercises
125(2)
AES: Rijndael
127(10)
The Basic Algorithm
128(1)
The Layers
129(4)
Decryption
133(3)
Design Considerations
136(1)
The RSA Algorithm
137(28)
The RSA Algorithm
137(5)
Attacks on RSA
142(3)
Primality Testing
145(4)
Factoring
149(5)
The RSA Challenge
154(2)
An Application to Treaty Verification
156(1)
The Public Key Concept
156(3)
Exercises
159(3)
Computer Problems
162(3)
Discrete Logarithms
165(12)
Discrete Logarithms
165(1)
Computing Discrete Logs
166(7)
Bit Commitment
173(1)
The ElGamal Public Key Cryptosystem
173(2)
Exercises
175(1)
Computer Problems
176(1)
Digital Signatures
177(19)
RSA Signatures
178(1)
The EIGamal Signature Scheme
179(3)
Hash Functions
182(4)
Birthday Attacks
186(4)
The Digital Signature Algorithm
190(1)
Exercises
191(3)
Computer Problems
194(2)
E-Commerce and Digital Cash
196(12)
Secure Electronic Transaction
197(2)
Digital Cash
199(7)
Exercises
206(2)
Secret Sharing Schemes
208(11)
Secret Splitting
208(1)
Threshold Schemes
209(6)
Exercises
215(2)
Computer Problems
217(2)
Games
219(9)
Flipping Coins over the Telephone
219(2)
Poker over the Telephone
221(5)
Exercises
226(2)
Zero-Knowledge Techniques
228(8)
The Basic Setup
228(3)
Feige-Fiat-Shamir Identification Scheme
231(2)
Exercises
233(3)
Key Establishment Protocols
236(14)
Key Agreement Protocols
237(2)
Key Pre-distribution
239(2)
Key Distribution
241(5)
Public Key Infrastructures (PKI)
246(2)
Exercises
248(2)
Information Theory
250(22)
Probability Review
251(2)
Entropy
253(5)
Huffman Codes
258(2)
Perfect Secrecy
260(3)
The Entropy of English
263(5)
Exercises
268(4)
Elliptic Curves
272(23)
The Addition Law
272(4)
Elliptic Curves Mod n
276(4)
Factoring with Elliptic Curves
280(4)
Elliptic Curves in Characteristic 2
284(3)
Elliptic Curve Cryptosystems
287(3)
Exercises
290(3)
Computer Problems
293(2)
Error Correcting Codes
295(58)
Introduction
295(6)
Error Correcting Codes
301(4)
Bounds on General Codes
305(6)
Linear Codes
311(8)
Hamming Codes
319(1)
Golay Codes
320(9)
Cyclic Codes
329(6)
BCH Codes
335(8)
Reed-Solomon Codes
343(2)
The McEliece Cryptosystem
345(3)
Other Topices
348(1)
Exercises
349(3)
Computer Problems
352(1)
Quantum Cryptography
353(19)
A Quantum Experiment
354(3)
Quantum Key Distribution
357(2)
Shor's Algorithm
359(11)
Exercises
370(2)
A Mathematica 372(31)
Getting Started with Mathematica
372(2)
Some Commands
374(1)
Examples for
Chapter 2
375(7)
Examples for
Chapter 3
382(4)
Examples for
Chapter 6
386(8)
Examples for
Chapter 8
394(1)
Examples for
Chapter 10
395(1)
Examples for
Chapter 11
396(1)
Examples for
Chapter 15
397(6)
B Maple Examples 403(34)
Getting Started with Maple
403(1)
Some Commands
404(2)
Examples for
Chapter 2
406(8)
Examples for
Chapter 3
414(5)
Examples for
Chapter 6
419(9)
Examples for
Chapter 8
428(1)
Examples for
Chapter 10
428(2)
Examples for
Chapter 11
430(2)
Examples for
Chapter 15
432(5)
C MATLAB Examples 437(41)
Getting Started with MATLAB
438(6)
Examples for
Chapter 2
444(12)
Examples for
Chapter 3
456(4)
Examples for
Chapter 6
460(6)
Examples for
Chapter 8
466(1)
Examples for
Chapter 10
466(1)
Examples for
Chapter 11
467(3)
Examples for
Chapter 15
470(8)
D Further Reading 478(1)
Bibliography 479(6)
Index 485