Preface |
|
xiii | |
Historical Prologue |
|
xvii | |
|
Part 1 Systems of Nonlinear Differential Equations |
|
|
|
Chapter 1 Geometric Approach to Differential Equations |
|
|
3 | (8) |
|
|
11 | (64) |
|
2.1 Fundamental Set of Solutions |
|
|
13 | (8) |
|
|
19 | (2) |
|
2.2 Constant Coefficients: Solutions and Phase Portraits |
|
|
21 | (28) |
|
|
48 | (1) |
|
2.3 Nonhomogeneous Systems: Time-dependent Forcing |
|
|
49 | (3) |
|
|
52 | (1) |
|
|
52 | (7) |
|
|
56 | (3) |
|
|
59 | (16) |
|
Chapter 3 The Flow: Solutions of Nonlinear Equations |
|
|
75 | (34) |
|
3.1 Solutions of Nonlinear Equations |
|
|
75 | (9) |
|
|
83 | (1) |
|
3.2 Numerical Solutions of Differential Equations |
|
|
84 | (13) |
|
|
96 | (1) |
|
|
97 | (12) |
|
Chapter 4 Phase Portraits with Emphasis on Fixed Points |
|
|
109 | (60) |
|
|
109 | (5) |
|
|
114 | (1) |
|
4.2 Stability of Fixed Points |
|
|
114 | (5) |
|
|
119 | (1) |
|
|
119 | (7) |
|
|
124 | (2) |
|
4.4 Two Dimensions and Nullclines |
|
|
126 | (8) |
|
|
133 | (1) |
|
4.5 Linearized Stability of Fixed Points |
|
|
134 | (11) |
|
|
143 | (2) |
|
4.6 Competitive Populations |
|
|
145 | (7) |
|
|
150 | (2) |
|
|
152 | (7) |
|
|
158 | (1) |
|
|
159 | (10) |
|
Chapter 5 Phase Portraits Using Scalar Functions |
|
|
169 | (44) |
|
5.1 Predator--Prey Systems |
|
|
169 | (4) |
|
|
172 | (1) |
|
|
173 | (10) |
|
|
182 | (1) |
|
5.3 Lyapunov Functions for Damped Systems |
|
|
183 | (8) |
|
|
190 | (1) |
|
|
191 | (4) |
|
|
195 | (1) |
|
|
195 | (4) |
|
|
199 | (1) |
|
|
199 | (11) |
|
|
210 | (1) |
|
|
210 | (3) |
|
Chapter 6 Periodic Orbits |
|
|
213 | (72) |
|
6.1 Introduction to Periodic Orbits |
|
|
214 | (5) |
|
|
218 | (1) |
|
6.2 Poincare-Bendixson Theorem |
|
|
219 | (10) |
|
|
226 | (3) |
|
6.3 Self-Excited Oscillator |
|
|
229 | (3) |
|
|
232 | (1) |
|
6.4 Andronov-Hopf Bifurcation |
|
|
232 | (10) |
|
|
240 | (2) |
|
6.5 Homoclinic Bifurcation |
|
|
242 | (5) |
|
|
246 | (1) |
|
6.6 Rate of Change of Volume |
|
|
247 | (4) |
|
|
249 | (2) |
|
|
251 | (11) |
|
|
261 | (1) |
|
|
262 | (10) |
|
|
271 | (1) |
|
|
272 | (13) |
|
Chapter 7 Chaotic Attractors |
|
|
285 | (58) |
|
|
285 | (6) |
|
|
289 | (2) |
|
|
291 | (6) |
|
|
296 | (1) |
|
|
297 | (16) |
|
|
312 | (1) |
|
|
313 | (4) |
|
|
316 | (1) |
|
|
317 | (3) |
|
|
319 | (1) |
|
|
320 | (9) |
|
|
328 | (1) |
|
7.7 Test for Chaotic Attractors |
|
|
329 | (2) |
|
|
331 | (1) |
|
|
331 | (5) |
|
|
336 | (7) |
|
Part 2 Iteration of Functions |
|
|
|
Chapter 8 Iteration of Functions as Dynamics |
|
|
343 | (10) |
|
|
343 | (6) |
|
8.2 Functions with Several Variables |
|
|
349 | (4) |
|
Chapter 9 Periodic Points of One-Dimensional Maps |
|
|
353 | (70) |
|
|
353 | (9) |
|
|
362 | (1) |
|
9.2 Iteration Using the Graph |
|
|
362 | (5) |
|
|
366 | (1) |
|
9.3 Stability of Periodic Points |
|
|
367 | (19) |
|
|
382 | (4) |
|
9.4 Critical Points and Basins |
|
|
386 | (5) |
|
|
390 | (1) |
|
9.5 Bifurcation of Periodic Points |
|
|
391 | (15) |
|
|
404 | (2) |
|
|
406 | (6) |
|
|
411 | (1) |
|
|
412 | (5) |
|
|
416 | (1) |
|
|
417 | (6) |
|
Chapter 10 Itineraries for One-Dimensional Maps |
|
|
423 | (64) |
|
10.1 Periodic Points from Transition Graphs |
|
|
424 | (13) |
|
|
435 | (2) |
|
10.2 Topological Transitivity |
|
|
437 | (5) |
|
|
441 | (1) |
|
10.3 Sequences of Symbols |
|
|
442 | (9) |
|
|
451 | (1) |
|
10.4 Sensitive Dependence on Initial Conditions |
|
|
451 | (4) |
|
|
454 | (1) |
|
|
455 | (9) |
|
|
463 | (1) |
|
10.6 Piecewise Expanding Maps and Subshifts |
|
|
464 | (11) |
|
|
473 | (2) |
|
|
475 | (4) |
|
|
478 | (1) |
|
|
479 | (8) |
|
Chapter 11 Invariant Sets for One-Dimensional Maps |
|
|
487 | (54) |
|
|
487 | (3) |
|
|
490 | (1) |
|
|
490 | (17) |
|
|
505 | (2) |
|
|
507 | (7) |
|
|
513 | (1) |
|
|
514 | (20) |
|
|
533 | (1) |
|
|
534 | (3) |
|
|
537 | (4) |
|
Chapter 12 Periodic Points of Higher Dimensional Maps |
|
|
541 | (56) |
|
12.1 Dynamics of Linear Maps |
|
|
541 | (14) |
|
|
555 | (1) |
|
12.2 Classification of Periodic Points |
|
|
555 | (12) |
|
|
566 | (1) |
|
|
567 | (8) |
|
|
575 | (1) |
|
12.4 Hyperbolic Toral Automorphisms |
|
|
575 | (5) |
|
|
580 | (1) |
|
|
580 | (15) |
|
|
594 | (1) |
|
|
595 | (2) |
|
Chapter 13 Invariant Sets for Higher Dimensional Maps |
|
|
597 | (72) |
|
|
598 | (14) |
|
|
611 | (1) |
|
|
612 | (24) |
|
|
632 | (4) |
|
13.3 Homoclinic Points and Horseshoes |
|
|
636 | (3) |
|
|
639 | (1) |
|
|
639 | (11) |
|
|
649 | (1) |
|
|
650 | (12) |
|
|
661 | (1) |
|
|
662 | (2) |
|
|
664 | (5) |
|
|
669 | (36) |
|
|
670 | (10) |
|
|
679 | (1) |
|
|
680 | (4) |
|
|
684 | (1) |
|
14.3 Iterated-Function Systems |
|
|
684 | (13) |
|
|
696 | (1) |
|
|
697 | (8) |
|
Appendix A Background and Terminology |
|
|
705 | (12) |
|
A.1 Calculus Background and Notation |
|
|
705 | (2) |
|
A.2 Analysis and Topology Terminology |
|
|
707 | (6) |
|
|
713 | (4) |
|
Appendix B Generic Properties |
|
|
717 | (4) |
Bibliography |
|
721 | (6) |
Index |
|
727 | |