Preface |
|
xi | |
|
|
1 | (16) |
|
|
1 | (2) |
|
|
3 | (1) |
|
|
4 | (6) |
|
|
10 | (1) |
|
*1.5 Internal Rate of Return |
|
|
11 | (2) |
|
|
13 | (4) |
|
|
17 | (18) |
|
2.1 Sample Spaces and Events |
|
|
17 | (1) |
|
2.2 Discrete Probability Spaces |
|
|
18 | (3) |
|
2.3 General Probability Spaces |
|
|
21 | (5) |
|
2.4 Conditional Probability |
|
|
26 | (4) |
|
|
30 | (1) |
|
|
31 | (4) |
|
|
35 | (20) |
|
|
35 | (2) |
|
3.2 General Properties of Random Variables |
|
|
37 | (1) |
|
3.3 Discrete Random Variables |
|
|
38 | (4) |
|
3.4 Continuous Random Variables |
|
|
42 | (2) |
|
3.5 Joint Distributions of Random Variables |
|
|
44 | (2) |
|
3.6 Independent Random Variables |
|
|
46 | (2) |
|
3.7 Identically Distributed Random Variables |
|
|
48 | (1) |
|
3.8 Sums of Independent Random Variables |
|
|
48 | (3) |
|
|
51 | (4) |
|
|
55 | (24) |
|
4.1 The Price Process of an Asset |
|
|
55 | (1) |
|
|
56 | (2) |
|
4.3 Classification of Derivatives |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (2) |
|
*4.7 Equality of Forward and Future Prices |
|
|
63 | (1) |
|
|
64 | (3) |
|
4.9 Properties of Options |
|
|
67 | (2) |
|
4.10 Dividend-Paying Stocks |
|
|
69 | (1) |
|
|
70 | (3) |
|
*4.12 Portfolios and Payoff Diagrams |
|
|
73 | (3) |
|
|
76 | (3) |
|
5 Discrete-Time Portfolio Processes |
|
|
79 | (12) |
|
5.1 Discrete Time Stochastic Processes |
|
|
79 | (4) |
|
5.2 Portfolio Processes and the Value Process |
|
|
83 | (1) |
|
5.3 Self-Financing Trading Strategies |
|
|
84 | (1) |
|
5.4 Equivalent Characterizations of Self-Financing |
|
|
85 | (2) |
|
5.5 Option Valuation by Portfolios |
|
|
87 | (1) |
|
|
88 | (3) |
|
|
91 | (16) |
|
6.1 Expectation of a Discrete Random Variable |
|
|
91 | (2) |
|
6.2 Expectation of a Continuous Random Variable |
|
|
93 | (2) |
|
6.3 Basic Properties of Expectation |
|
|
95 | (1) |
|
6.4 Variance of a Random Variable |
|
|
96 | (2) |
|
6.5 Moment Generating Functions |
|
|
98 | (1) |
|
6.6 The Strong Law of Large Numbers |
|
|
99 | (1) |
|
6.7 The Central Limit Theorem |
|
|
100 | (2) |
|
|
102 | (5) |
|
|
107 | (18) |
|
7.1 Construction of the Binomial Model |
|
|
107 | (4) |
|
7.2 Completeness and Arbitrage in the Binomial Model |
|
|
111 | (4) |
|
7.3 Path-Independent Claims |
|
|
115 | (4) |
|
*7.4 Path-Dependent Claims |
|
|
119 | (2) |
|
|
121 | (4) |
|
8 Conditional Expectation |
|
|
125 | (10) |
|
8.1 Definition of Conditional Expectation |
|
|
125 | (1) |
|
8.2 Examples of Conditional Expectations |
|
|
126 | (2) |
|
8.3 Properties of Conditional Expectation |
|
|
128 | (2) |
|
|
130 | (2) |
|
*8.5 Existence of Conditional Expectation |
|
|
132 | (2) |
|
|
134 | (1) |
|
9 Martingales in Discrete Time Markets |
|
|
135 | (12) |
|
9.1 Discrete Time Martingales |
|
|
135 | (2) |
|
9.2 The Value Process as a Martingale |
|
|
137 | (1) |
|
9.3 A Martingale View of the Binomial Model |
|
|
138 | (2) |
|
9.4 The Fundamental Theorems of Asset Pricing |
|
|
140 | (2) |
|
*9.5 Change of Probability |
|
|
142 | (2) |
|
|
144 | (3) |
|
1 American Claims in Discrete-Time Markets |
|
|
147 | (12) |
|
10.1 Hedging an American Claim |
|
|
147 | (2) |
|
|
149 | (2) |
|
10.3 Submartingales and Supermartingales |
|
|
151 | (1) |
|
10.4 Optimal Exercise of an American Claim |
|
|
152 | (2) |
|
10.5 Hedging in the Binomial Model |
|
|
154 | (1) |
|
10.6 Optimal Exercise in the Binomial Model |
|
|
155 | (1) |
|
|
156 | (3) |
|
|
159 | (24) |
|
11.1 Continuous-Time Stochastic Processes |
|
|
159 | (1) |
|
|
160 | (4) |
|
11.3 Stochastic Integrals |
|
|
164 | (6) |
|
11.4 The Ito-Doeblin Formula |
|
|
170 | (6) |
|
11.5 Stochastic Differential Equations |
|
|
176 | (4) |
|
|
180 | (3) |
|
1 The Black-Scholes-Merton Model |
|
|
183 | (14) |
|
|
183 | (1) |
|
12.2 Continuous-Time Portfolios |
|
|
184 | (1) |
|
12.3 The Black-Scholes Formula |
|
|
185 | (3) |
|
12.4 Properties of the Black-Scholes Call Function |
|
|
188 | (3) |
|
*12.5 The BS Formula as a Limit of CR.R Formulas |
|
|
191 | (3) |
|
|
194 | (3) |
|
1 Martingales in the Black-Scholes-Merton Model |
|
|
197 | (16) |
|
13.1 Continuous-Time Martingales |
|
|
197 | (4) |
|
13.2 Change of Probability and Girsanov's Theorem |
|
|
201 | (3) |
|
13.3 Risk-Neutral Valuation of a Derivative |
|
|
204 | (1) |
|
13.4 Proofs of the Valuation Formulas |
|
|
205 | (3) |
|
|
208 | (1) |
|
*13.6 The Feynman-Kac Representation Theorem |
|
|
209 | (2) |
|
|
211 | (2) |
|
1 Path-Independent Options |
|
|
213 | (16) |
|
|
213 | (3) |
|
14.2 Forward Start Options |
|
|
216 | (1) |
|
|
216 | (2) |
|
|
218 | (1) |
|
|
219 | (2) |
|
14.6 Options on Dividend-Paying Stocks |
|
|
221 | (3) |
|
|
224 | (2) |
|
|
226 | (3) |
|
|
229 | (68) |
|
|
229 | (5) |
|
|
234 | (6) |
|
|
240 | (3) |
|
|
243 | (1) |
|
|
244 | (5) |
|
|
249 | (6) |
|
B Solution of the BSM PDE |
|
|
255 | (4) |
|
C Properties of the BSM Call Function |
|
|
259 | (6) |
|
D Solutions to Odd-Numbered Problems |
|
|
265 | (32) |
Bibliography |
|
297 | (2) |
Index |
|
299 | |