Preface |
|
vii | |
Notation and Terminology |
|
xi | |
|
Chapter 1 The Heat Operator, Temperatures and Mean Values |
|
|
1 | (34) |
|
1.1 Temperatures and Heat Balls |
|
|
1 | (2) |
|
1.2 Mean Values of Smooth Functions over Heat Spheres |
|
|
3 | (4) |
|
1.3 Mean Values of Smooth Subtemperatures over Heat Spheres |
|
|
7 | (6) |
|
1.4 Mean Values of Smooth Subtemperatures over Heat Balls |
|
|
13 | (4) |
|
1.5 The Boundary Maximum Principle on Circular Cylinders |
|
|
17 | (2) |
|
|
19 | (6) |
|
|
25 | (4) |
|
1.8 Equicontinuous Families of Temperatures |
|
|
29 | (2) |
|
|
31 | (4) |
|
Chapter 2 The Poisson Integral for a Circular Cylinder |
|
|
35 | (18) |
|
2.1 The Cauchy Problem on a Half-Space |
|
|
35 | (2) |
|
2.2 The Dirichlet Problem on a Circular Cylinder |
|
|
37 | (2) |
|
2.3 Double Layer Heat Potentials |
|
|
39 | (5) |
|
2.4 The Poisson Integral and the Caloric Measure |
|
|
44 | (3) |
|
2.5 Characterizations of Temperatures |
|
|
47 | (4) |
|
2.6 Extensions of some Harnack Theorems |
|
|
51 | (1) |
|
|
52 | (1) |
|
Chapter 3 Subtemperatures and the Dirichlet Problem on Convex Domains of Revolution |
|
|
53 | (32) |
|
3.1 Semicontinuous Functions |
|
|
53 | (2) |
|
|
55 | (9) |
|
3.3 The Dirichlet Problem on Convex Domains of Revolution |
|
|
64 | (5) |
|
3.4 Boundary Behaviour of the PWB Solution |
|
|
69 | (2) |
|
3.5 Characterizations of Hypotemperatures and Subtemperatures |
|
|
71 | (9) |
|
3.6 Properties of Hypotemperatures |
|
|
80 | (2) |
|
|
82 | (1) |
|
|
83 | (2) |
|
Chapter 4 Temperatures on an Infinite Strip |
|
|
85 | (20) |
|
4.1 An Extension of the Maximum Principle on an Infinite Strip |
|
|
85 | (2) |
|
4.2 Gauss-Weierstrass Integrals |
|
|
87 | (8) |
|
4.3 Nonnegative Temperatures |
|
|
95 | (6) |
|
4.4 Minimality of the Fundamental Temperature |
|
|
101 | (2) |
|
|
103 | (2) |
|
Chapter 5 Classes of Subtemperatures on an Infinite Strip |
|
|
105 | (22) |
|
5.1 Hyperplane Mean Values and Classes of Subtemperatures |
|
|
105 | (9) |
|
5.2 Behaviour of the Hyperplane Mean Values of Subtemperatures |
|
|
114 | (5) |
|
5.3 Classes of Subtemperatures and Nonnegative Thermic Majorants |
|
|
119 | (4) |
|
5.4 Characterizations of the Gauss-Weierstrass Integrals of Functions |
|
|
123 | (3) |
|
|
126 | (1) |
|
Chapter 6 Green Functions and Heat Potentials |
|
|
127 | (32) |
|
|
127 | (4) |
|
6.2 Green Functions and the Adjoint Heat Equation |
|
|
131 | (3) |
|
|
134 | (6) |
|
6.4 The Distributional Heat Operator |
|
|
140 | (6) |
|
6.5 The Riesz Decomposition Theorem |
|
|
146 | (4) |
|
6.6 Monotone Approximation by Smooth Supertemperatures |
|
|
150 | (1) |
|
6.7 Further Characterizations of Subtemperatures |
|
|
151 | (1) |
|
6.8 Supertemperatures on an Infinite Strip or Half-Space |
|
|
152 | (5) |
|
|
157 | (2) |
|
Chapter 7 Polar Sets and Thermal Capacity |
|
|
159 | (36) |
|
|
159 | (3) |
|
7.2 Families of Supertemperatures |
|
|
162 | (4) |
|
7.3 The Natural Order Decomposition |
|
|
166 | (4) |
|
7.4 Reductions and Smoothed Reductions |
|
|
170 | (5) |
|
7.5 The Thermal Capacity of Compact Sets |
|
|
175 | (3) |
|
7.6 The Thermal Capacity of More General Sets |
|
|
178 | (5) |
|
7.7 Thermal and Cothermal Capacities |
|
|
183 | (1) |
|
|
183 | (4) |
|
7.9 Polar Sets and Heat Potentials |
|
|
187 | (1) |
|
7.10 Thermal Capacity and Lebesgue Measure |
|
|
188 | (4) |
|
|
192 | (3) |
|
Chapter 8 The Dirichlet Problem on Arbitrary Open Sets |
|
|
195 | (36) |
|
8.1 Classification of Boundary Points |
|
|
196 | (3) |
|
8.2 Upper and Lower PWB Solutions |
|
|
199 | (6) |
|
8.3 Resolutivity and PWB Solutions |
|
|
205 | (2) |
|
8.4 The Caloric Measure on the Essential Boundary |
|
|
207 | (7) |
|
8.5 Boundary Behaviour of PWB Solutions |
|
|
214 | (8) |
|
8.6 Geometric Tests for Regularity |
|
|
222 | (3) |
|
8.7 Green Functions, Heat Potentials, and Thermal Capacity |
|
|
225 | (3) |
|
|
228 | (3) |
|
Chapter 9 The Thermal Fine Topology |
|
|
231 | (28) |
|
9.1 Definitions and Basic Properties |
|
|
231 | (6) |
|
9.2 Further Properties of Reductions |
|
|
237 | (3) |
|
9.3 The Fundamental Convergence Theorem |
|
|
240 | (4) |
|
9.4 Applications of the Fundamental Convergence Theorem to Reductions |
|
|
244 | (5) |
|
9.5 Thermal Thinness and the Regularity of Normal Boundary Points |
|
|
249 | (3) |
|
9.6 Thermal Fine Limits and Euclidean Limits |
|
|
252 | (1) |
|
9.7 Thermal Thinness and the Quasi-Lindelof Property |
|
|
253 | (4) |
|
|
257 | (2) |
Bibliography |
|
259 | (4) |
Index |
|
263 | |