Muutke küpsiste eelistusi

Introduction to Kalman Filtering with MATLAB Examples [Pehme köide]

  • Formaat: Paperback / softback, 81 pages, kõrgus x laius: 235x191 mm, kaal: 172 g
  • Sari: Synthesis Lectures on Signal Processing
  • Ilmumisaeg: 01-Sep-2013
  • Kirjastus: Morgan and Claypool Life Sciences
  • ISBN-10: 1627051392
  • ISBN-13: 9781627051392
  • Formaat: Paperback / softback, 81 pages, kõrgus x laius: 235x191 mm, kaal: 172 g
  • Sari: Synthesis Lectures on Signal Processing
  • Ilmumisaeg: 01-Sep-2013
  • Kirjastus: Morgan and Claypool Life Sciences
  • ISBN-10: 1627051392
  • ISBN-13: 9781627051392
The Kalman filter is the Bayesian optimum solution to the problem of sequentially estimating the states of a dynamical system in which the state evolution and measurement processes are both linear and Gaussian. Given the ubiquity of such systems, the Kalman filter finds use in a variety of applications, e.g., target tracking, guidance and navigation, and communications systems. The purpose of this book is to present a brief introduction to Kalman filtering. The theoretical framework of the Kalman filter is first presented, followed by examples showing its use in practical applications. Extensions of the method to nonlinear problems and distributed applications are discussed. A software implementation of the algorithm in the MATLAB programming language is provided, as well as MATLAB code for several example applications discussed in the manuscript.Table of Contents: Acknowledgments / Introduction / The Estimation Problem / The Kalman Filter / Extended and Decentralized Kalman Filtering / Conclusion / Notation / Bibliography / Authors' Biographies
Acknowledgments ix
1 Introduction
1(4)
2 The Estimation Problem
5(18)
2.1 Background
5(2)
2.1.1 Example: Maximum-Likelihood Estimation in Gaussian Noise
6(1)
2.2 Linear Estimation
7(2)
2.3 The Bayesian Approach to Parameter Estimation
9(1)
2.3.1 Example: Estimating the Bias of a Coin
9(1)
2.4 Sequential Bayesian Estimation
10(13)
2.4.1 Example: The 1-D Kalman Filter
18(5)
3 The Kalman Filter
23(20)
3.1 Theory
23(2)
3.2 Implementation
25(2)
3.2.1 Sample MATLAB Code
25(1)
3.2.2 Computational Issues
25(2)
3.3 Examples
27(16)
3.3.1 Target Tracking with Radar
27(4)
3.3.2 Channel Estimation in Communications Systems
31(3)
3.3.3 Recursive Least Squares (RLS) Adaptive Filtering
34(9)
4 Extended and Decentralized Kalman Filtering
43(20)
4.1 Extended Kalman Filter
43(6)
4.1.1 Example: Predator-Prey System
46(3)
4.2 Decentralized Kalman Filtering
49(14)
4.2.1 Example: Distributed Object Tracking
53(10)
5 Conclusion
63(2)
Notation 65(2)
Bibliography 67(4)
Authors' Biographies 71