1 Foundations of Modeling |
|
1 | (14) |
|
1.1 Simulation vs. Analytic Results |
|
|
3 | (2) |
|
1.2 Stochastic vs. Deterministic Models |
|
|
5 | (1) |
|
1.3 Fundamentals of Modeling |
|
|
6 | (5) |
|
1.4 Validity and Purpose of Models |
|
|
11 | (4) |
2 Agent-Based Modeling |
|
15 | (64) |
|
2.1 Mathematical and Computational Modeling |
|
|
15 | (6) |
|
|
17 | (4) |
|
|
21 | (9) |
|
2.2.1 The Structure of ABMs |
|
|
22 | (3) |
|
|
25 | (1) |
|
2.2.3 Time-Driven Algorithms |
|
|
26 | (2) |
|
2.2.4 Event-Driven Models |
|
|
28 | (2) |
|
|
30 | (4) |
|
|
34 | (12) |
|
|
37 | (2) |
|
|
39 | (4) |
|
|
43 | (3) |
|
2.5 General Consideration when Analyzing a Model |
|
|
46 | (2) |
|
|
47 | (1) |
|
2.6 Case Study: The Evolution of Fimbriation |
|
|
48 | (31) |
|
|
49 | (2) |
|
|
51 | (28) |
3 ABMs Using Repast and Java |
|
79 | (52) |
|
3.1 The Basics of Agent-Based Modeling |
|
|
80 | (3) |
|
3.2 An Outline of Repast Concepts |
|
|
83 | (4) |
|
3.2.1 Contexts and Projections |
|
|
84 | (2) |
|
3.2.2 Model Parameterization |
|
|
86 | (1) |
|
3.3 The Game of Life in Repast S |
|
|
87 | (23) |
|
3.3.1 The model.score File |
|
|
88 | (1) |
|
|
89 | (14) |
|
3.3.3 The Model Initializer |
|
|
103 | (1) |
|
3.3.4 Summary of Model Creation |
|
|
104 | (1) |
|
|
105 | (1) |
|
|
106 | (1) |
|
3.3.7 Creating an Agent Style Class |
|
|
107 | (2) |
|
3.3.8 Inspecting Agents at Runtime |
|
|
109 | (1) |
|
|
109 | (1) |
|
3.4 Malaria Model in Repast Using Java |
|
|
110 | (21) |
|
|
110 | (1) |
|
3.4.2 The model.score File |
|
|
111 | (1) |
|
3.4.3 Commonalities in the Agent Types |
|
|
112 | (1) |
|
3.4.4 Building the Root Context |
|
|
112 | (1) |
|
3.4.5 Accessing Runtime Parameter Values |
|
|
113 | (1) |
|
3.4.6 Creating a Projection |
|
|
114 | (1) |
|
3.4.7 Implementing the Common Elements of the Agents |
|
|
115 | (3) |
|
3.4.8 Completing the Mosquito Agent |
|
|
118 | (1) |
|
3.4.9 Scheduling the Actions |
|
|
119 | (1) |
|
3.4.10 Visualizing the Model |
|
|
120 | (1) |
|
|
121 | (3) |
|
|
124 | (1) |
|
3.4.13 A Statistics-Gathering Agent |
|
|
124 | (3) |
|
3.4.14 Summary of Concepts Relating to the Malaria Model |
|
|
127 | (1) |
|
3.4.15 Running Repast Models Outside Eclipse |
|
|
128 | (2) |
|
3.4.16 Going Further with Repast S A |
|
|
130 | (1) |
4 Differential Equations |
|
131 | (52) |
|
|
131 | (10) |
|
4.1.1 A Mathematical Example |
|
|
136 | (3) |
|
|
139 | (2) |
|
|
141 | (3) |
|
4.3 Differential Equations |
|
|
144 | (10) |
|
|
147 | (3) |
|
|
150 | (2) |
|
4.3.3 Bacterial Growth Revisited |
|
|
152 | (2) |
|
|
154 | (12) |
|
4.4.1 A Brief Note on Stability |
|
|
161 | (5) |
|
|
166 | (11) |
|
4.5.1 Michaelis-Menten and Hill Kinetics |
|
|
168 | (5) |
|
4.5.2 Modeling Gene Expression |
|
|
173 | (4) |
|
4.6 Case Study: Cherry and Adler's Bistable Switch |
|
|
177 | (5) |
|
|
182 | (1) |
5 Mathematical Tools |
|
183 | (32) |
|
5.1 A Word of Warning: Pitfalls of CAS |
|
|
183 | (2) |
|
5.2 Existing Tools and Types of Systems |
|
|
185 | (2) |
|
5.3 Maxima: Preliminaries |
|
|
187 | (2) |
|
5.4 Maxima: Simple Sample Sessions |
|
|
189 | (6) |
|
|
189 | (5) |
|
5.4.2 Saving and Recalling Sessions |
|
|
194 | (1) |
|
5.5 Maxima: Beyond Preliminaries |
|
|
195 | (14) |
|
|
196 | (2) |
|
5.5.2 Matrices and Eigenvalues |
|
|
198 | (2) |
|
5.5.3 Graphics and Plotting |
|
|
200 | (5) |
|
5.5.4 Integrating and Differentiating |
|
|
205 | (4) |
|
|
209 | (5) |
|
|
209 | (1) |
|
|
210 | (2) |
|
5.6.3 Cherry and Adler's Bistable Switch |
|
|
212 | (2) |
|
|
214 | (1) |
6 Other Stochastic Methods and Prism |
|
215 | (58) |
|
|
217 | (8) |
|
|
225 | (11) |
|
|
227 | (4) |
|
|
231 | (4) |
|
6.2.3 Codon Bias in Proteins |
|
|
235 | (1) |
|
|
236 | (10) |
|
6.3.1 Absorbing Markov Chains |
|
|
240 | (2) |
|
6.3.2 Continuous Time Markov Chains |
|
|
242 | (2) |
|
6.3.3 An Example from Gene Activation |
|
|
244 | (2) |
|
6.4 Analyzing Markov Chains: Sample Paths |
|
|
246 | (2) |
|
6.5 Analyzing Markov Chains: Using PRISM |
|
|
248 | (16) |
|
6.5.1 The PRISM Modeling Language |
|
|
249 | (2) |
|
|
251 | (6) |
|
|
257 | (4) |
|
6.5.4 Simulation in PRISM |
|
|
261 | (2) |
|
|
263 | (1) |
|
|
264 | (9) |
|
|
265 | (3) |
|
6.6.2 Stochastic Versions of a Differential Equation |
|
|
268 | (2) |
|
6.6.3 Tricks for PRISM Models |
|
|
270 | (3) |
7 Simulating Biochemical Systems |
|
273 | (34) |
|
7.1 The Gillespie Algorithms |
|
|
273 | (11) |
|
7.1.1 Gillespie's Direct Method |
|
|
274 | (1) |
|
7.1.2 Gillespie's First Reaction Method |
|
|
275 | (1) |
|
7.1.3 Java Implementation of the Direct Method |
|
|
276 | (2) |
|
|
278 | (1) |
|
|
279 | (2) |
|
7.1.6 The Lotka-Volterra Equation |
|
|
281 | (3) |
|
7.2 The Gibson-Bruck Algorithm |
|
|
284 | (5) |
|
7.2.1 The Dependency Graph |
|
|
285 | (1) |
|
7.2.2 The Indexed Priority Queue |
|
|
285 | (1) |
|
7.2.3 Updating the r Values |
|
|
286 | (2) |
|
|
288 | (1) |
|
7.3 A Constant Time Method |
|
|
289 | (4) |
|
7.3.1 Selection Procedure |
|
|
290 | (2) |
|
|
292 | (1) |
|
7.4 Practical Implementation Considerations |
|
|
293 | (4) |
|
7.4.1 Data Structures—The Dependency Tree |
|
|
294 | (1) |
|
7.4.2 Programming Techniques—Tree Updating |
|
|
295 | (1) |
|
7.4.3 Runtime Environment |
|
|
296 | (1) |
|
|
297 | (1) |
|
|
297 | (4) |
|
7.7 Delayed Stochastic Models |
|
|
301 | (2) |
|
7.8 The Stochastic Genetic Networks Simulator |
|
|
303 | (2) |
|
|
305 | (2) |
A Reference Material |
|
307 | (10) |
|
|
307 | (1) |
|
A.2 Some Common Rules of Differentiation and Integration |
|
|
307 | (2) |
|
A.2.1 Common Differentials |
|
|
307 | (1) |
|
|
308 | (1) |
|
|
309 | (1) |
|
A.4 PRISM Notation Summary |
|
|
310 | (1) |
|
A.5 Some Mathematical Concepts |
|
|
310 | (7) |
|
A.5.1 Vectors and Matrices |
|
|
310 | (3) |
|
|
313 | (1) |
|
A.5.3 Probability Distributions |
|
|
314 | (1) |
|
|
315 | (2) |
References |
|
317 | (2) |
Index |
|
319 | |