Preface |
|
xi | |
|
|
1 | (16) |
|
1.1 Why Conduct Vibration Test of Structures? |
|
|
3 | (1) |
|
1.2 Techniques Available for Vibration Testing of Structures |
|
|
3 | (1) |
|
1.3 Forced Vibration Testing Methods |
|
|
4 | (1) |
|
1.4 Vibration Testing of Civil Engineering Structures |
|
|
5 | (1) |
|
1.5 Parameter Estimation Techniques |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.7 Modal Parameter Estimation Techniques |
|
|
6 | (4) |
|
1.8 Perceived Limitations of OMA |
|
|
10 | (1) |
|
1.9 Operating Deflection Shapes |
|
|
10 | (1) |
|
1.10 Practical Considerations of OMA |
|
|
11 | (2) |
|
1.11 About the Book Structure |
|
|
13 | (4) |
|
|
15 | (2) |
|
2 Random Variables and Signals |
|
|
17 | (16) |
|
|
17 | (6) |
|
2.1.1 Density Function and Expectation |
|
|
17 | (2) |
|
2.1.2 Estimation by Time Averaging |
|
|
19 | (2) |
|
2.1.3 Joint Distributions |
|
|
21 | (2) |
|
|
23 | (5) |
|
2.2.1 Concept of Correlation |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (2) |
|
2.2.4 Properties of Correlation Functions |
|
|
27 | (1) |
|
2.3 The Gaussian Distribution |
|
|
28 | (5) |
|
|
28 | (1) |
|
2.3.2 The Central Limit Theorem |
|
|
28 | (2) |
|
2.3.3 Conditional Mean and Correlation |
|
|
30 | (1) |
|
|
31 | (2) |
|
3 Matrices and Regression |
|
|
33 | (20) |
|
3.1 Vector and Matrix Notation |
|
|
33 | (2) |
|
3.2 Vector and Matrix Algebra |
|
|
35 | (9) |
|
3.2.1 Vectors and Inner Products |
|
|
35 | (1) |
|
3.2.2 Matrices and Outer Products |
|
|
36 | (2) |
|
3.2.3 Eigenvalue Decomposition |
|
|
38 | (2) |
|
3.2.4 Singular Value Decomposition |
|
|
40 | (1) |
|
|
40 | (1) |
|
3.2.6 Scalar Matrix Measures |
|
|
41 | (2) |
|
3.2.7 Vector and Matrix Calculus |
|
|
43 | (1) |
|
3.3 Least Squares Regression |
|
|
44 | (9) |
|
3.3.1 Linear Least Squares |
|
|
44 | (3) |
|
3.3.2 Bias, Weighting and Covariance |
|
|
47 | (5) |
|
|
52 | (1) |
|
|
53 | (28) |
|
4.1 Continuous Time Fourier Transforms |
|
|
53 | (6) |
|
4.1.1 Real Fourier Series |
|
|
54 | (1) |
|
4.1.2 Complex Fourier Series |
|
|
55 | (3) |
|
4.1.3 The Fourier Integral |
|
|
58 | (1) |
|
4.2 Discrete Time Fourier Transforms |
|
|
59 | (7) |
|
4.2.1 Discrete Time Representation |
|
|
59 | (3) |
|
4.2.2 The Sampling Theorem |
|
|
62 | (4) |
|
4.3 The Laplace Transform |
|
|
66 | (5) |
|
4.3.1 The Laplace Transform as a generalization of the Fourier Transform |
|
|
66 | (1) |
|
4.3.2 Laplace Transform Properties |
|
|
67 | (1) |
|
4.3.3 Some Laplace Transforms |
|
|
68 | (3) |
|
|
71 | (10) |
|
4.4.1 The Z-Transform as a generalization of the Fourier Series |
|
|
71 | (2) |
|
4.4.2 Z-Transform Properties |
|
|
73 | (1) |
|
|
73 | (2) |
|
4.4.4 Difference Equations and Transfer Function |
|
|
75 | (1) |
|
|
76 | (3) |
|
|
79 | (2) |
|
|
81 | (42) |
|
5.1 Single Degree of Freedom System |
|
|
82 | (10) |
|
|
82 | (1) |
|
|
83 | (4) |
|
5.1.3 Impulse Response Function |
|
|
87 | (2) |
|
|
89 | (1) |
|
5.1.5 Frequency Response Function |
|
|
90 | (2) |
|
5.2 Multiple Degree of Freedom Systems |
|
|
92 | (15) |
|
5.2.1 Free Responses for Undamped Systems |
|
|
93 | (2) |
|
5.2.2 Free Responses for Proportional Damping |
|
|
95 | (1) |
|
5.2.3 General Solutions for Proportional Damping |
|
|
95 | (1) |
|
5.2.4 Transfer Function and FRF Matrix for Proportional Damping |
|
|
96 | (3) |
|
|
99 | (8) |
|
|
107 | (16) |
|
5.3.1 Structural Modification Theory |
|
|
107 | (2) |
|
5.3.2 Sensitivity Equations |
|
|
109 | (1) |
|
5.3.3 Closely Spaced Modes |
|
|
110 | (4) |
|
5.3.4 Model Reduction (SEREP) |
|
|
114 | (2) |
|
5.3.5 Discrete Time Representations |
|
|
116 | (3) |
|
5.3.6 Simulation of OMA Responses |
|
|
119 | (2) |
|
|
121 | (2) |
|
|
123 | (26) |
|
|
123 | (7) |
|
|
123 | (2) |
|
|
125 | (3) |
|
6.1.3 SISO Fundamental Theorem |
|
|
128 | (1) |
|
6.1.4 MIMO Fundamental Theorem |
|
|
129 | (1) |
|
|
130 | (13) |
|
6.2.1 Concept of White Noise |
|
|
130 | (1) |
|
6.2.2 Decomposition in Time Domain |
|
|
131 | (3) |
|
6.2.3 Decomposition in Frequency Domain |
|
|
134 | (3) |
|
6.2.4 Zeroes of the Spectral Density Matrix |
|
|
137 | (2) |
|
|
139 | (1) |
|
6.2.6 Approximate Residue Form |
|
|
140 | (3) |
|
6.3 Uncorrelated Modal Coordinates |
|
|
143 | (6) |
|
6.3.1 Concept of Uncorrelated Modal Coordinates |
|
|
143 | (1) |
|
6.3.2 Decomposition in Time Domain |
|
|
144 | (1) |
|
6.3.3 Decomposition in Frequency Domain |
|
|
145 | (2) |
|
|
147 | (2) |
|
|
149 | (52) |
|
|
149 | (3) |
|
|
149 | (1) |
|
7.1.2 Field Visit and Site Inspection |
|
|
150 | (1) |
|
7.1.3 Field Work Preparation |
|
|
150 | (1) |
|
|
151 | (1) |
|
7.2 Specifying Dynamic Measurements |
|
|
152 | (16) |
|
7.2.1 General Considerations |
|
|
152 | (2) |
|
7.2.2 Number and Locations of Sensors |
|
|
154 | (4) |
|
|
158 | (1) |
|
7.2.4 Length of Time Series |
|
|
159 | (1) |
|
7.2.5 Data Sets and References |
|
|
160 | (2) |
|
7.2.6 Expected Vibration Level |
|
|
162 | (2) |
|
7.2.7 Loading Source Correlation and Artificial Excitation |
|
|
164 | (4) |
|
7.3 Sensors and Data Acquisition |
|
|
168 | (28) |
|
|
168 | (1) |
|
7.3.2 Sensor Characteristics |
|
|
169 | (4) |
|
7.3.3 The Piezoelectric Accelerometer |
|
|
173 | (2) |
|
7.3.4 Sensors Used in Civil Engineering Testing |
|
|
175 | (4) |
|
|
179 | (3) |
|
|
182 | (1) |
|
7.3.7 System Measurement Range |
|
|
182 | (1) |
|
|
183 | (4) |
|
7.3.9 Cabled or Wireless Sensors? |
|
|
187 | (1) |
|
|
188 | (3) |
|
7.3.11 Noise Floor Estimation |
|
|
191 | (3) |
|
7.3.12 Very Low Frequencies and Influence of Tilt |
|
|
194 | (2) |
|
7.4 Data Quality Assessment |
|
|
196 | (2) |
|
7.4.1 Data Acquisition Settings |
|
|
196 | (1) |
|
7.4.2 Excessive Noise from External Equipment |
|
|
197 | (1) |
|
7.4.3 Checking the Signal-to-Noise Ratio |
|
|
197 | (1) |
|
|
197 | (1) |
|
7.5 Chapter Summary -- Good Testing Practice |
|
|
198 | (3) |
|
|
199 | (2) |
|
|
201 | (38) |
|
|
201 | (3) |
|
|
202 | (1) |
|
|
202 | (1) |
|
8.1.3 Detrending and Segmenting |
|
|
203 | (1) |
|
8.2 Signal Classification |
|
|
204 | (4) |
|
8.2.1 Operating Condition Sorting |
|
|
204 | (1) |
|
|
205 | (1) |
|
|
206 | (2) |
|
|
208 | (10) |
|
8.3.1 Digital Filter Main Types |
|
|
209 | (1) |
|
8.3.2 Two Averaging Filter Examples |
|
|
210 | (2) |
|
8.3.3 Down-Sampling and Up-Sampling |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
213 | (1) |
|
8.3.6 Integration and Differentiation |
|
|
214 | (2) |
|
8.3.7 The OMA Filtering Principles |
|
|
216 | (2) |
|
8.4 Correlation Function Estimation |
|
|
218 | (11) |
|
|
219 | (2) |
|
8.4.2 Biased Welch Estimate |
|
|
221 | (1) |
|
8.4.3 Unbiased Welch Estimate (Zero Padding) |
|
|
222 | (2) |
|
|
224 | (5) |
|
8.5 Spectral Density Estimation |
|
|
229 | (10) |
|
|
229 | (1) |
|
8.5.2 Welch Estimation and Leakage |
|
|
229 | (3) |
|
8.5.3 Random Decrement Estimation |
|
|
232 | (1) |
|
|
233 | (1) |
|
8.5.5 Correlation Tail and Tapering |
|
|
233 | (4) |
|
|
237 | (2) |
|
9 Time Domain Identification |
|
|
239 | (22) |
|
9.1 Common Challenges in Time Domain Identification |
|
|
240 | (2) |
|
9.1.1 Fitting the Correlation Functions (Modal Participation) |
|
|
240 | (2) |
|
9.1.2 Seeking the Best Conditions (Stabilization Diagrams) |
|
|
242 | (1) |
|
9.2 AR Models and Poly Reference (PR) |
|
|
242 | (2) |
|
|
244 | (4) |
|
9.4 Ibrahim Time Domain (ITD) |
|
|
248 | (3) |
|
9.5 The Eigensystem Realization Algorithm (ERA) |
|
|
251 | (3) |
|
9.6 Stochastic Subspace Identification (SSI) |
|
|
254 | (7) |
|
|
258 | (3) |
|
10 Frequency-Domain Identification |
|
|
261 | (20) |
|
10.1 Common Challenges in Frequency-Domain Identification |
|
|
262 | (3) |
|
10.1.1 Fitting the Spectral Functions (Modal Participation) |
|
|
262 | (1) |
|
10.1.2 Seeking the Best Conditions (Stabilization Diagrams) |
|
|
263 | (2) |
|
10.2 Classical Frequency-Domain Approach (Basic Frequency Domain) |
|
|
265 | (1) |
|
10.3 Frequency-Domain Decomposition (FDD) |
|
|
266 | (9) |
|
|
266 | (1) |
|
10.3.2 FDD Approximations |
|
|
267 | (2) |
|
10.3.3 Mode Shape Estimation |
|
|
269 | (2) |
|
|
271 | (4) |
|
10.4 ARMA Models in Frequency Domain |
|
|
275 | (6) |
|
|
278 | (3) |
|
|
281 | (26) |
|
11.1 Some Practical Issues |
|
|
281 | (3) |
|
11.1.1 Modal Assurance Criterion (MAC) |
|
|
282 | (1) |
|
11.1.2 Stabilization Diagrams |
|
|
282 | (1) |
|
11.1.3 Mode Shape Merging |
|
|
283 | (1) |
|
11.2 Main Areas of Application |
|
|
284 | (7) |
|
11.2.1 OMA Results Validation |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
285 | (3) |
|
11.2.4 Structural Health Monitoring |
|
|
288 | (3) |
|
|
291 | (16) |
|
|
292 | (5) |
|
|
297 | (4) |
|
|
301 | (5) |
|
|
306 | (1) |
|
|
307 | (20) |
|
12.1 Closely Spaced Modes |
|
|
307 | (2) |
|
12.1.1 Implications for the Identification |
|
|
308 | (1) |
|
12.1.2 Implications for Modal Validation |
|
|
308 | (1) |
|
12.2 Uncertainty Estimation |
|
|
309 | (2) |
|
12.2.1 Repeated Identification |
|
|
309 | (1) |
|
12.2.2 Covariance Matrix Estimation |
|
|
310 | (1) |
|
12.3 Mode Shape Expansion |
|
|
311 | (4) |
|
12.3.1 FE Mode Shape Subspaces |
|
|
311 | (1) |
|
12.3.2 FE Mode Shape Subspaces Using SEREP |
|
|
312 | (1) |
|
12.3.3 Optimizing the Number of FE Modes (LC Principle) |
|
|
313 | (2) |
|
12.4 Modal Indicators and Automated Identification |
|
|
315 | (4) |
|
12.4.1 Oversized Models and Noise Modes |
|
|
315 | (1) |
|
12.4.2 Generalized Stabilization and Modal Indicators |
|
|
315 | (3) |
|
|
318 | (1) |
|
|
319 | (1) |
|
12.5.1 Modal Filtering in Time Domain |
|
|
319 | (1) |
|
12.5.2 Modal Filtering in Frequency Domain |
|
|
320 | (1) |
|
12.5.3 Generalized Operating Deflection Shapes (ODS) |
|
|
320 | (1) |
|
|
320 | (3) |
|
12.6.1 Mass Change Method |
|
|
321 | (1) |
|
12.6.2 Mass-Stiffness Change Method |
|
|
322 | (1) |
|
12.6.3 Using the FEM Mass Matrix |
|
|
323 | (1) |
|
|
323 | (1) |
|
12.7.1 Inverting the FRF Matrix |
|
|
324 | (1) |
|
|
324 | (1) |
|
12.8 Estimation of Stress and Strain |
|
|
324 | (3) |
|
12.8.1 Stress and Strain from Force Estimation |
|
|
324 | (1) |
|
12.8.2 Stress and Strain from Mode Shape Expansion |
|
|
325 | (1) |
|
|
325 | (2) |
|
Appendix A Nomenclature and Key Equations |
|
|
327 | (8) |
|
Appendix B Operational Modal Testing of the Heritage Court Tower |
|
|
335 | (12) |
|
|
335 | (1) |
|
B.2 Description of the Building |
|
|
335 | (1) |
|
B.3 Operational Modal Testing |
|
|
336 | (2) |
|
B.3.1 Vibration Data Acquisition System |
|
|
338 | (1) |
|
B.4 Vibration Measurements |
|
|
338 | (4) |
|
|
341 | (1) |
|
|
341 | (1) |
|
B.5 Analysis of the HCT Cases |
|
|
342 | (5) |
|
B.5.1 FDD Modal Estimation |
|
|
342 | (1) |
|
B.5.2 SSI Modal Estimation |
|
|
343 | (1) |
|
|
343 | (3) |
|
|
346 | (1) |
|
Appendix C Dynamics in Short |
|
|
347 | (5) |
|
|
347 | (1) |
|
C.2 Basic Form of the Transfer and Impulse Response Functions |
|
|
348 | (1) |
|
|
348 | (1) |
|
C.4 Classical Form of the Transfer and Impulse Response Functions |
|
|
349 | (1) |
|
C.5 Complete Analytical Solution |
|
|
350 | (1) |
|
|
351 | (1) |
|
|
351 | (1) |
References |
|
352 | (1) |
Index |
|
353 | |