Muutke küpsiste eelistusi

Introduction to Operator Theory and Invariant Subspaces, Volume 42 [Kõva köide]

  • Formaat: Hardback, 357 pages, kõrgus x laius: 230x150 mm
  • Sari: North-Holland Mathematical Library
  • Ilmumisaeg: 01-Oct-1988
  • Kirjastus: North-Holland
  • ISBN-10: 044470521X
  • ISBN-13: 9780444705211
Teised raamatud teemal:
  • Kõva köide
  • Hind: 69,39 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 357 pages, kõrgus x laius: 230x150 mm
  • Sari: North-Holland Mathematical Library
  • Ilmumisaeg: 01-Oct-1988
  • Kirjastus: North-Holland
  • ISBN-10: 044470521X
  • ISBN-13: 9780444705211
Teised raamatud teemal:
This monograph only requires of the reader a basic knowledge of classical analysis: measure theory, analytic functions, Hilbert spaces, functional analysis. The book is self-contained, except for a few technical tools, for which precise references are given.Part I starts with finite-dimensional spaces and general spectral theory. But very soon (Chapter III), new material is presented, leading to new directions for research. Open questions are mentioned here. Part II concerns compactness and its applications, not only spectral theory for compact operators (Invariant Subspaces and Lomonossov's Theorem) but also duality between the space of nuclear operators and the space of all operators on a Hilbert space, a result which is seldom presented. Part III contains Algebra Techniques: Gelfand's Theory, and application to Normal Operators. Here again, directions for research are indicated. Part IV deals with analytic functions, and contains a few new developments. A simplified, operator-oriented, version is presented. Part V presents dilations and extensions: Nagy-Foias dilation theory, and the author's work about C1-contractions. Part VI deals with the Invariant Subspace Problem, with positive results and counter-examples.In general, much new material is presented. On the Invariant Subspace Problem, the level of research is reached, both in the positive and negative directions.
I. General Theory. Operators on Finite-Dimensional Spaces. Elementary
Spectral Theory. The Orbits of a Linear Operator. II. Compactness and its
Applications. Spectral Theory for Compact Operators. Topologies on the Space
of Operators. III. Banach Algebras Techniques. Banach Algebras. Normal
Operators. IV. Analytic Functions. Banach Spaces of Analytic Functions. The
Multiplication by ei&thgr; on H2 (&Pgr;) and L2 (&Pgr;). V. Dilations and
Extensions. Minimal Dilation of a Contraction. The H Functional Calculus.
C1-Contractions. VI. Invariant Subspaces. Positive Results. A Counter-Example
to the Invariant Subspace Problem. Exercises. Index. References.