Muutke küpsiste eelistusi

Introduction to PCM Telemetering Systems 2nd edition [Kõva köide]

(New Mexico State University, Las Cruces, USA)
  • Formaat: Hardback, 446 pages, kõrgus x laius: 234x156 mm, kaal: 990 g, 225 Illustrations, black and white
  • Ilmumisaeg: 29-May-2002
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0849310946
  • ISBN-13: 9780849310942
Teised raamatud teemal:
  • Formaat: Hardback, 446 pages, kõrgus x laius: 234x156 mm, kaal: 990 g, 225 Illustrations, black and white
  • Ilmumisaeg: 29-May-2002
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0849310946
  • ISBN-13: 9780849310942
Teised raamatud teemal:
Telemetering systems and applications have moved far beyond the space flight telemetry most people have heard of to cutting-edge uses across a broad range of disciplines, including industry, medicine, and meteorology. To fully understand and participate in the acquisition of data this technology makes possible, scientists in these fields along with engineers new to telemetering require some background in the concepts, hardware, and software that makes the technology so valuable.

Introduction to PCM Telemetering Systems, Second Edition summarizes the techniques and terminology used in sending data and control information between users and the instruments that collect and process the data. It gives an overall systems introduction to the relevant topics in three primary areas: system interfaces; data transport, timing, and synchronization; and data transmission techniques. The topics addressed include sensor characteristics, user interface design, data filtering, data framing, statistical analysis, telemetry standards, time code standards, modulation techniques, and radio propagation. To reinforce understanding, each chapter includes exercises.

Rather than focusing on design specifics, which can change so rapidly with evolving technologies, the author centers his discussions on concepts and standards. This edition incorporates the latest standards, LabVIEW-based examples of telemetry and command processing, and simulations using multiSim and Commsim.
Introduction
1(12)
Basic Definitions
1(6)
Definitions of Telemetry and Telecommand
2(1)
Classification of Links
3(1)
PCM Definition
3(2)
System Components
5(2)
Organization of the Text
7(1)
References
8(5)
Section I System Interfaces
Sensor Technology
13(34)
Introduction
13(1)
Objectives
13(1)
Measurement Environment
14(8)
General Components
14(3)
Standard Definitions
17(1)
Measurements
17(1)
Input-Output Relationship
18(2)
Precision, Accuracy, and Reproducibility
20(1)
Absolute Measurement and Relative Measurement
21(1)
Representative Sensor Technology
22(20)
Resistive Technology
22(1)
Pressure, Strain, or Force Measurements
22(3)
Temperature Measurements
25(1)
Resistance Temperature Detectors
25(1)
Thermistors
26(1)
Light Measurements
27(1)
Position Measurements
27(1)
Capacitive Technology
27(1)
Capacitive Rain Gauge
28(1)
Time Measurement
28(3)
Physical Effects
31(1)
Seebeck Effect
31(2)
Piezoelectric Effect
33(4)
Semiconductor Technology
37(1)
Photodetectors
37(1)
Temperature Sensors
37(1)
Time Measurement
38(3)
Hybrid Devices
41(1)
Smart Sensor Technology
42(2)
References
44(1)
Problems
45(2)
Modeling and Calibration
47(40)
Background
47(1)
Objectives
48(1)
Basics
48(7)
Calibration
48(2)
Sensor Example
50(1)
Calibration Range
51(1)
Measurement Calibration Process
52(1)
Calibration Variables
53(1)
Difference between Calibration and Usage
54(1)
Data Modeling
54(1)
Difference between Calibration and Data Modeling
54(1)
Modeling as Filtering
54(1)
Error Types
55(3)
Systematic Errors
55(1)
Random Errors
56(1)
Interference
56(1)
Hysteresis Error
56(1)
Dead Band Error
56(2)
Statistical Concepts
58(11)
Basic Measurement Model
58(1)
Probability Concepts
58(1)
Relative Frequency
58(1)
Probability Density
59(2)
Cumulative Distribution Function
61(1)
Gaussian PDF and Noise Model
62(1)
The erf Function
63(2)
The Q Function
65(1)
Electronic Noise
65(1)
Mean, Variance, and Standard Deviation Estimates
66(1)
Parameter Estimation
66(1)
Error in the Mean
66(2)
Uncertainty in the Mean
68(1)
Confidence Intervals
68(1)
Number of Measurements Required
69(1)
Least Squares Fitting
69(13)
Least Squares Definition
70(1)
Linear Least Squares - Mean Square Error Base
70(1)
Linear Least Squares - Statistical Base
71(2)
Quality of the Fit
73(2)
Correlation Coefficients
75(2)
f Statistic
77(1)
Nonlinear Fits
78(1)
Parametric Models
78(1)
Power Series Models
78(2)
Cautions with Least Squares
80(1)
Model Selection
80(1)
Outlying Points
81(1)
Overfitting the Model
82(1)
References
82(1)
Problems
83(4)
Computer Systems
87(28)
Introduction
87(1)
Objectives
88(1)
Telemetry Database
89(4)
Database Architecture
89(1)
Storage
90(1)
Processing Levels and Unit Conversion
91(1)
Packet Processing
92(1)
User Interface Systems
93(11)
Telemetry Displays
95(2)
Data Partitioning
97(1)
Status Indicators
98(1)
Interaction with Database
98(1)
LabVIEW-Based Example
99(1)
Command Interfaces
100(1)
Command Data Input
100(1)
Command Line Input
101(1)
Graphical Input
101(1)
Function Key Input
102(1)
Command Processing
102(1)
Command Parsing
102(1)
Command Validation
103(1)
Command Files
103(1)
LabVIEW-Based Examples
103(1)
Computer Organization
104(9)
Real-Time Systems
105(1)
Interrupt Characteristics
105(1)
Software Characteristics
106(1)
User Segment Software Architecture
107(1)
Payload Structure
108(1)
Software Architecture
108(2)
Bus Structure
110(1)
Processor Architectures
110(1)
Microcontroller-Based Configurations
111(1)
PC-104 Based Configurations
111(2)
References
113(1)
Problems
113(2)
Signal Processing
115(54)
Introduction
115(1)
Objectives
116(1)
Sampled versus Continuous Data
116(2)
Continuous Analog Transmission
117(1)
Multiplexed Analog Transmission
117(1)
Pulse Code Modulation
118(1)
Signal Types
118(3)
PCM Signals
120(1)
Digital Signals
120(1)
Bilevel Signals
120(1)
Discrete Signals
121(1)
Bandlimiting
121(7)
Fourier Transforms
121(1)
Transform Definition
121(1)
Magnitude and Phase Spectra
122(2)
Signal Bandwidth
124(1)
Bandlimited Signals
125(1)
Essential Bandwidth Definition
125(1)
Signal Bandlimiting Architecture
126(2)
Sampling Theorem
128(5)
Nyquist Sampling Theorem
129(1)
Oversampling
130(1)
Aliasing
130(3)
Filter Design
133(16)
Reasons for Filtering
133(1)
Filter Types and Parameters
133(1)
Filter Transfer Functions
134(1)
Butterworth Filters
135(1)
Chebyshev Filters
136(1)
Bessel Filters
136(3)
Filter Design Method
139(1)
Low Pass Building Block
140(1)
Filter Type Determination
141(1)
Filter Order Determination
141(2)
Resistor and Capacitor Selection
143(1)
Sample LPF Design
144(1)
Conversion to High Pass Design
145(1)
Conversion to Band Pass Design
146(3)
Software Filter Design
149(2)
Moving Average
149(1)
Moving Least Squares
150(1)
Quantization
151(4)
Quantization Process
151(2)
Commutation
153(1)
Quantization Noise and Resolution
153(1)
Signal-to-Noise Ratio
154(1)
Total Transmitted Data
155(1)
Sampling Hardware
155(6)
Process Timing
156(1)
Sample-and-Hold Amplifiers
157(1)
Analog-to-Digital Converters
158(1)
Successive Approximation
159(1)
Flash
159(1)
Dual Conversion
160(1)
References
161(1)
Problems
162(7)
Section II Data Transport, Timing, and Synchronization
Telemetry Frames and Packets
169(46)
Introduction
169(1)
Objectives
169(1)
Background
170(2)
Context
170(1)
Data Link Layer Packaging
171(1)
Commutation
172(1)
Telemetry Frames
172(11)
Basic IRIG Frame Definitions
173(1)
Minor Frame
173(1)
Major Frame
174(1)
Commutated Data
174(1)
Supercommutated Data
175(1)
Subframes and Subcommutated Data
176(1)
Supersubcommutated Data
177(1)
Frame Examples
177(2)
IRIG Class I and Class II Telemetry
179(1)
Standard Parameters
179(2)
Format Changes
181(1)
Asynchronous Formats
182(1)
Tagged Data
183(1)
Synchronization Codes
183(1)
Telemetry Frame Design
184(4)
General Concerns
185(1)
Management and Accounting Information
186(1)
Data Packaging
187(1)
Packet Telemetry
188(6)
Packet Assumptions
188(1)
Protocol Data Unit Format
189(2)
Packet Modes
191(1)
Commutated Mode
191(1)
Entropy Mode
191(2)
Virtual Channel Mode
193(1)
MIL-STD-1553 Packets
194(5)
Background
194(1)
MIL-STD-1553 Bus Structure
194(1)
Packet Formats
195(1)
Control Structure
196(1)
IRIG-106 Modifications
197(2)
CCSDS Packets
199(1)
Data Networking Packets
199(4)
Background
199(1)
Packet Formats
200(1)
Data Servers
200(1)
Data Throughput Issues
201(2)
Command Processor Interface
203(1)
Formatting for Transmission
204(7)
General Structure
204(1)
Data Randomizers
204(1)
Data Format Specification
205(2)
Data Format Generation
207(1)
Usage Characteristics
208(3)
References
211(1)
Problems
212(3)
Telemetry Data Synchronization
215(34)
Introduction
215(1)
Objectives
215(1)
Synchronization Process
216(2)
Carrier Synchronization
218(1)
Bit Synchronization
218(5)
General Functions
218(2)
Clock Extraction
220(1)
Open-Loop Clock Extractors
220(1)
Closed-Loop Clock Extractors
221(1)
Data Formats
222(1)
De-Randomizer
222(1)
Frame Synchronization
223(8)
General Functions
223(1)
Frame Synchronization States
224(1)
Search State
224(2)
Check State
226(1)
Lock State
226(1)
Packet Synchronization
227(2)
Network Synchronization
229(1)
Statistical Measures
229(1)
False Lock Probability
229(2)
Missed Synchronization Probability
231(1)
Error Detection
231(10)
Background
231(2)
Probability of Error
233(1)
Post-Processing
234(1)
Error Correcting Codes
234(1)
Block Codes
235(2)
Convolutional Codes
237(2)
Concatenated Codes
239(1)
Channel Improvement
240(1)
Coding Gain
240(1)
Data Sequencing
241(2)
References
243(1)
Problems
244(5)
Time and Position Determination
249(30)
Introduction
249(1)
Objectives
250(1)
Definition of Time
251(4)
Absolute Time
251(1)
TAI (Atomic Time)
252(1)
Universal Time
252(1)
Julian Date
253(1)
Elapsed Time
254(1)
Time Code Formats
255(12)
IRIG
255(1)
IRIG Frame Formats
255(5)
IRIG PCM Timing Word Format
260(1)
IRIG 1553 Formats
261(1)
National Institute of Standards and Technology (NIST)
262(3)
NASA and CCSDS
265(2)
Global Positioning System: Determining Time and Position
267(9)
GPS Definition
267(2)
Time and Position Determination
269(3)
NMEA Navigation Sentences
272(4)
References
276(1)
Problems
276(3)
Command Systems
279(26)
Introduction
279(1)
Objectives
280(1)
Command Composition
281(3)
Command Strategies
284(2)
Repeat-and-Execute Command Protocol
285(1)
Verify-and-Execute Command Protocol
286(3)
Open-Loop Command Protocol
287(1)
Command Examples
287(2)
Operational Considerations
289(10)
Command Synchronization
289(2)
Command Verification
291(1)
Subsystem Command Rates
292(1)
Pre-Event Commanding
292(1)
Command Counters
293(1)
Command Files
294(1)
Command Error Rates
295(1)
Probability of Command Reception Error
295(2)
Parity Error Detection Strategies
297(1)
Repeat Command Strategies
298(1)
Packet Command Systems
299(2)
References
301(1)
Problems
301(4)
Section III Data Transmission Techniques
Modulation Techniques
305(48)
Introduction
305(1)
Objectives
306(1)
Analog Modulation
307(11)
Phase and Frequency Definition
307(1)
Frequency Modulation
308(4)
Phase Modulation
312(1)
Signal-to-Noise Performance
313(4)
Relative Performance of FM and PM
317(1)
Digital Modulation
318(13)
Phase Shift Keying
318(4)
Frequency Shift Keying
322(2)
Minimum Shift Keying
324(1)
Quadrature Amplitude Modulation
325(1)
Bit Error Rate (BER) Performance
326(5)
Bandwidth Estimates
331(7)
Analog Bandwidth
331(1)
Digital Bandwidth
332(1)
PSK
333(1)
FSK
333(2)
MSK and GMSK
335(1)
QAM
336(1)
Spectrum Control Issues
337(1)
System Planning
338(10)
Telemetry Allocations
339(1)
General Allocations
339(3)
Matched Bands
342(1)
Emission Standards
342(1)
Necessary Bandwidth
342(1)
Spectral Masks
343(2)
Intermodulation Effects
345(1)
Unequal Data Rates
346(1)
Spectral Regrowth
346(2)
Digital Transmission with Analog Modulators
348(1)
References
349(1)
Problems
350(3)
Microwave Transmission
353(56)
Introduction
353(1)
Objectives
353(1)
Background
354(5)
Microwave Bands
355(1)
Structure of the Atmosphere
356(1)
Propagation Modes
357(1)
Band Characteristics
358(1)
Antenna Basics
359(9)
Antenna Types
359(1)
Antenna Radiation Patterns
360(4)
Antenna Gain
364(3)
Target Tracking
367(1)
Free Space Propagation
368(14)
Friis Transmission Relationship
368(2)
Space Loss
370(1)
Noise Temperature
370(1)
Two-Port Model
371(1)
Effective Temperature Computation
372(1)
Antenna Temperature Computation
373(1)
System Temperature Computation
374(5)
Signal Margin
379(1)
Overall Link Equation
380(2)
Atmospheric, Sun, and Ground Effects
382(5)
Refraction
382(2)
Scintillation
384(1)
Sun Intrusions
385(1)
Diffraction
386(1)
General Terrain Fade Margin
387(1)
Rain Effects Modeling
387(8)
Rain Effects
388(1)
Models
389(1)
International Telecommunications Union Model
390(2)
Crane Global Model
392(2)
System Planning
394(1)
Antenna Wetting
394(1)
Mobile Propagation
395(8)
Channel Geometry
395(2)
Two-Ray Model
397(2)
Multiple-Ray Model
399(1)
Doppler Shifts
399(4)
Link Planning
403(1)
References
403(2)
Problems
405(4)
Appendix A 409(6)
Index 415


Stephen Horan