Preface |
|
xv | |
Organization of the Book |
|
xvi | |
How to Use This Book |
|
xvii | |
Acknowledgments |
|
xviii | |
|
1 Lorentz and Poincare Invariance |
|
|
1 | (56) |
|
|
1 | (3) |
|
1.1.1 Inertial Reference Frames |
|
|
1 | (1) |
|
1.1.2 Galilean Relativity |
|
|
2 | (2) |
|
1.2 Lorentz and Poincare Transformations |
|
|
4 | (41) |
|
1.2.1 Postulates of Special Relativity and Their Implications |
|
|
4 | (8) |
|
1.2.2 Active and Passive Transformations |
|
|
12 | (2) |
|
|
14 | (22) |
|
|
36 | (4) |
|
1.2.5 Representation-Independent Poincare Lie Algebra |
|
|
40 | (5) |
|
1.3 Representations of the Lorentz Group |
|
|
45 | (2) |
|
1.3.1 Labeling Representations of the Lorentz Group |
|
|
45 | (1) |
|
1.3.2 Lorentz Transformations of Weyl Spinors |
|
|
46 | (1) |
|
1.4 Poincare Group and the Little Group |
|
|
47 | (10) |
|
1.4.1 Intrinsic Spin and the Poincare Group |
|
|
47 | (1) |
|
|
48 | (5) |
|
|
53 | (1) |
|
|
54 | (3) |
|
|
57 | (99) |
|
2.1 Lagrangian Formulation |
|
|
57 | (12) |
|
2.1.1 Euler-Lagrange Equations |
|
|
58 | (6) |
|
2.1.2 Hamilton's Principle |
|
|
64 | (3) |
|
2.1.3 Lagrange Multipliers and Constraints |
|
|
67 | (2) |
|
2.2 Symmetries, Noether's Theorem and Conservation Laws |
|
|
69 | (4) |
|
2.3 Small Oscillations and Normal Modes |
|
|
73 | (5) |
|
2.4 Hamiltonian Formulation |
|
|
78 | (10) |
|
2.4.1 Hamiltonian and Hamilton's Equations |
|
|
78 | (2) |
|
|
80 | (4) |
|
2.4.3 Liouville Equation and Liouville's Theorem |
|
|
84 | (1) |
|
2.4.4 Canonical Transformations |
|
|
85 | (3) |
|
2.5 Relation to Quantum Mechanics |
|
|
88 | (7) |
|
2.6 Relativistic Kinematics |
|
|
95 | (4) |
|
|
99 | (18) |
|
2.7.1 Maxwell's Equations |
|
|
99 | (6) |
|
2.7.2 Electromagnetic Waves |
|
|
105 | (4) |
|
2.7.3 Gauge Transformations and Gauge Fixing |
|
|
109 | (8) |
|
2.8 Analytic Relativistic Mechanics |
|
|
117 | (9) |
|
2.9 Constrained Hamiltonian Systems |
|
|
126 | (30) |
|
2.9.1 Construction of the Hamiltonian Approach |
|
|
126 | (18) |
|
2.9.2 Summary of the Dirac-Bergmann Algorithm |
|
|
144 | (4) |
|
2.9.3 Gauge Fixing, the Dirac Bracket and Quantization |
|
|
148 | (2) |
|
2.9.4 Dirac Bracket and Canonical Quantization |
|
|
150 | (2) |
|
|
152 | (1) |
|
|
152 | (4) |
|
3 Relativistic Classical Fields |
|
|
156 | (49) |
|
3.1 Relativistic Classical Scalar Fields |
|
|
156 | (10) |
|
3.2 Noether's Theorem and Symmetries |
|
|
166 | (19) |
|
3.2.1 Noether's Theorem for Classical Fields |
|
|
166 | (8) |
|
3.2.2 Stress-Energy Tensor |
|
|
174 | (2) |
|
3.2.3 Angular Momentum Tensor |
|
|
176 | (3) |
|
3.2.4 Intrinsic Angular Momentum |
|
|
179 | (2) |
|
3.2.5 Internal Symmetries |
|
|
181 | (1) |
|
3.2.6 Belinfante-Rosenfeld Tensor |
|
|
182 | (1) |
|
3.2.7 Noether's Theorem and Poisson Brackets |
|
|
183 | (1) |
|
3.2.8 Generators of the Poincare Group |
|
|
184 | (1) |
|
3.3 Classical Electromagnetic Field |
|
|
185 | (20) |
|
3.3.1 Lagrangian Formulation of Electromagnetism |
|
|
185 | (3) |
|
3.3.2 Hamiltonian Formulation of Electromagnetism |
|
|
188 | (13) |
|
|
201 | (1) |
|
|
202 | (3) |
|
4 Relativistic Quantum Mechanics |
|
|
205 | (110) |
|
4.1 Review of Quantum Mechanics |
|
|
205 | (43) |
|
4.1.1 Postulates of Quantum Mechanics |
|
|
205 | (7) |
|
4.1.2 Notation, Linear and Antilinear Operators |
|
|
212 | (3) |
|
4.1.3 Symmetry Transformations and Wigner's Theorem |
|
|
215 | (1) |
|
4.1.4 Projective Representations of Symmetry Groups |
|
|
216 | (5) |
|
4.1.5 Symmetry in Quantum Systems |
|
|
221 | (1) |
|
|
222 | (1) |
|
4.1.7 Time Reversal Operator |
|
|
223 | (6) |
|
4.1.8 Additive and Multiplicative Quantum Numbers |
|
|
229 | (3) |
|
4.1.9 Systems of Identical Particles and Fock Space |
|
|
232 | (4) |
|
4.1.10 Charge Conjugation and Antiparticles |
|
|
236 | (3) |
|
4.1.11 Interaction Picture in Quantum Mechanics |
|
|
239 | (2) |
|
4.1.12 Path Integrals in Quantum Mechanics |
|
|
241 | (7) |
|
4.2 Wavepackets and Dispersion |
|
|
248 | (6) |
|
4.3 Klein-Gordon Equation |
|
|
254 | (10) |
|
4.3.1 Formulation of the Klein-Gordon Equation |
|
|
254 | (3) |
|
|
257 | (3) |
|
4.3.3 Interaction with a Scalar Potential |
|
|
260 | (2) |
|
4.3.4 Interaction with an Electromagnetic Field |
|
|
262 | (2) |
|
|
264 | (25) |
|
4.4.1 Formulation of the Dirac Equation |
|
|
265 | (3) |
|
4.4.2 Probability Current |
|
|
268 | (1) |
|
4.4.3 Nonrelativistic Limit and Relativistic Classical Limit |
|
|
268 | (2) |
|
4.4.4 Interaction with an Electromagnetic Field |
|
|
270 | (4) |
|
4.4.5 Lorentz Covariance of the Dirac Equation |
|
|
274 | (3) |
|
4.4.6 Dirac Adjoint Spinor |
|
|
277 | (1) |
|
4.4.7 Plane Wave Solutions |
|
|
278 | (5) |
|
4.4.8 Completeness and Projectors |
|
|
283 | (1) |
|
|
284 | (2) |
|
4.4.10 Covariant Interactions and Bilinears |
|
|
286 | (1) |
|
4.4.11 Poincare Group and the Dirac Equation |
|
|
287 | (2) |
|
4.5 P, C and T: Discrete Transformations |
|
|
289 | (11) |
|
4.5.1 Parity Transformation |
|
|
289 | (2) |
|
|
291 | (4) |
|
|
295 | (3) |
|
|
298 | (2) |
|
4.6 Chirality and Weyl and Majorana Fermions |
|
|
300 | (11) |
|
|
300 | (1) |
|
|
301 | (1) |
|
4.6.3 Weyl Spinors and the Weyl Equations |
|
|
302 | (2) |
|
4.6.4 Plane Wave Solutions in the Chiral Representation |
|
|
304 | (2) |
|
|
306 | (1) |
|
4.6.6 Weyl Spinor Notation |
|
|
307 | (4) |
|
|
311 | (4) |
|
|
313 | (1) |
|
|
313 | (2) |
|
5 Introduction to Particle Physics |
|
|
315 | (50) |
|
5.1 Overview of Particle Physics |
|
|
315 | (4) |
|
|
319 | (27) |
|
5.2.1 Development of Quantum Electrodynamics (QED) |
|
|
319 | (3) |
|
5.2.2 Development of Quantum Chromodynamics (QCD) |
|
|
322 | (7) |
|
5.2.3 Development of Electroweak (EW) Theory |
|
|
329 | (6) |
|
5.2.4 Quark Mixing and the CKM Matrix |
|
|
335 | (3) |
|
5.2.5 Neutrino Mixing and the PMNS Matrix |
|
|
338 | (6) |
|
5.2.6 Majorana Neutrinos and Double Beta Decay |
|
|
344 | (2) |
|
5.3 Representations of SU(N) and the Quark Model |
|
|
346 | (19) |
|
5.3.1 Multiplets of SU(N) and Young Tableaux |
|
|
346 | (12) |
|
|
358 | (5) |
|
|
363 | (1) |
|
|
363 | (2) |
|
6 Formulation of Quantum Field Theory |
|
|
365 | (138) |
|
6.1 Lessons from Quantum Mechanics |
|
|
365 | (5) |
|
6.1.1 Quantization of Normal Modes |
|
|
366 | (4) |
|
6.1.2 Motivation for Relativistic Quantum Field Theory |
|
|
370 | (1) |
|
|
370 | (47) |
|
|
371 | (11) |
|
6.2.2 Field Configuration and Momentum Density Space |
|
|
382 | (1) |
|
6.2.3 Covariant Operator Formulation |
|
|
383 | (5) |
|
6.2.4 Poincare Covariance |
|
|
388 | (4) |
|
6.2.5 Causality and Spacelike Separations |
|
|
392 | (2) |
|
6.2.6 Feynman Propagator for Scalar Particles |
|
|
394 | (5) |
|
6.2.7 Charged Scalar Field |
|
|
399 | (5) |
|
|
404 | (3) |
|
6.2.9 Functional Integral Formulation |
|
|
407 | (5) |
|
6.2.10 Euclidean Space Formulation |
|
|
412 | (1) |
|
6.2.11 Generating Functional for a Scalar Field |
|
|
413 | (4) |
|
|
417 | (40) |
|
6.3.1 Annihilation and Creation Operators |
|
|
418 | (1) |
|
6.3.2 Fock Space and Grassmann Algebra |
|
|
419 | (8) |
|
6.3.3 Feynman Path Integral for Fermions |
|
|
427 | (1) |
|
6.3.4 Fock Space for Dirac Fermions |
|
|
428 | (4) |
|
6.3.5 Functional Integral for Dirac Fermions |
|
|
432 | (4) |
|
6.3.6 Canonical Quantization of Dirac Fermions |
|
|
436 | (10) |
|
6.3.7 Quantum Field Theory for Dirac Fermions |
|
|
446 | (7) |
|
6.3.8 Generating Functional for Dirac Fermions |
|
|
453 | (4) |
|
|
457 | (27) |
|
6.4.1 Canonical Quantization of the Electromagnetic Field |
|
|
457 | (1) |
|
6.4.2 Fock Space for Photons |
|
|
458 | (8) |
|
6.4.3 Functional Integral for Photons |
|
|
466 | (2) |
|
|
468 | (8) |
|
6.4.5 Covariant Canonical Quantization for Photons |
|
|
476 | (8) |
|
6.5 Massive Vector Bosons |
|
|
484 | (19) |
|
6.5.1 Classical Massive Vector Field |
|
|
485 | (4) |
|
6.5.2 Normal Modes of the Massive Vector Field |
|
|
489 | (1) |
|
6.5.3 Quantization of the Massive Vector Field |
|
|
490 | (4) |
|
6.5.4 Functional Integral for Massive Vector Bosons |
|
|
494 | (3) |
|
6.5.5 Covariant Canonical Quantization for Massive Vector Bosons |
|
|
497 | (1) |
|
|
498 | (1) |
|
|
499 | (4) |
|
7 Interacting Quantum Field Theories |
|
|
503 | (97) |
|
7.1 Physical Spectrum of States |
|
|
503 | (4) |
|
7.2 Kallen-Lehmann Spectral Representation |
|
|
507 | (3) |
|
7.3 Scattering Cross-Sections and Decay Rates |
|
|
510 | (23) |
|
|
511 | (9) |
|
7.3.2 Relating the Cross-Section to the 5-Matrix |
|
|
520 | (7) |
|
7.3.3 Particle Decay Rates |
|
|
527 | (1) |
|
7.3.4 Two-Body Scattering (2 → 2) and Mandelstam Variables |
|
|
528 | (4) |
|
7.3.5 Unitarity of the 5-Matrix and the Optical Theorem |
|
|
532 | (1) |
|
7.4 Interaction Picture and Feynman Diagrams |
|
|
533 | (13) |
|
7.4.1 Interaction Picture |
|
|
534 | (3) |
|
|
537 | (7) |
|
7.4.3 Feynman Rules in Momentum Space |
|
|
544 | (2) |
|
7.5 Calculating Invariant Amplitudes |
|
|
546 | (23) |
|
7.5.1 LSZ Reduction Formula for Scalars |
|
|
546 | (11) |
|
|
557 | (7) |
|
|
564 | (5) |
|
|
569 | (31) |
|
7.6.1 External States and Internal Lines |
|
|
570 | (2) |
|
7.6.2 Examples of Interacting Theories |
|
|
572 | (6) |
|
7.6.3 Example Tree-Level Results |
|
|
578 | (8) |
|
7.6.4 Substitution Rules and Crossing Symmetry |
|
|
586 | (1) |
|
7.6.5 Examples of Calculations of Cross-Sections |
|
|
587 | (7) |
|
|
594 | (2) |
|
|
596 | (1) |
|
|
597 | (3) |
|
8 Symmetries and Renormalization |
|
|
600 | (93) |
|
8.1 Discrete Symmetries: P, C and T |
|
|
600 | (25) |
|
|
600 | (8) |
|
|
608 | (5) |
|
|
613 | (5) |
|
|
618 | (5) |
|
8.1.5 Spin-Statistics Connection |
|
|
623 | (2) |
|
8.2 Generating Functionals and the Effective Action |
|
|
625 | (8) |
|
8.2.1 Generating Functional for Connected Green's Functions |
|
|
625 | (2) |
|
8.2.2 The Effective Action |
|
|
627 | (4) |
|
8.2.3 Effective Potential |
|
|
631 | (1) |
|
|
632 | (1) |
|
8.3 Schwinger-Dyson Equations |
|
|
633 | (9) |
|
8.3.1 Derivation of Schwinger-Dyson Equations |
|
|
633 | (3) |
|
8.3.2 Ward and Ward-Takahashi Identities |
|
|
636 | (6) |
|
|
642 | (6) |
|
8.4.1 Superficial Degree of Divergence |
|
|
642 | (3) |
|
8.4.2 Superficial Divergences in QED |
|
|
645 | (3) |
|
|
648 | (13) |
|
8.5.1 QED Schwinger-Dyson Equations with Bare Fields |
|
|
650 | (5) |
|
8.5.2 Renormalized QED Green's Functions |
|
|
655 | (4) |
|
8.5.3 Renormalization Group |
|
|
659 | (2) |
|
|
661 | (5) |
|
8.6.1 Regularization Methods |
|
|
661 | (3) |
|
8.6.2 Dimensional Regularization |
|
|
664 | (2) |
|
8.7 Renormalized Perturbation Theory |
|
|
666 | (20) |
|
8.7.1 Renormalized Perturbation Theory for Φ4 |
|
|
666 | (5) |
|
8.7.2 Renormalized Perturbative Yukawa Theory |
|
|
671 | (1) |
|
8.7.3 Renormalized Perturbative QED |
|
|
672 | (9) |
|
8.7.4 Minimal Subtraction Renormalization Schemes |
|
|
681 | (2) |
|
8.7.5 Running Coupling and Running Mass in QED |
|
|
683 | (2) |
|
8.7.6 Renormalization Group Flow and Fixed Points |
|
|
685 | (1) |
|
8.8 Spontaneous Symmetry Breaking |
|
|
686 | (4) |
|
|
690 | (3) |
|
|
691 | (1) |
|
|
692 | (1) |
|
9 Nonabelian Gauge Theories |
|
|
693 | (35) |
|
9.1 Nonabelian Gauge Theories |
|
|
693 | (5) |
|
9.1.1 Formulation of Nonabelian Gauge Theories |
|
|
693 | (3) |
|
9.1.2 Wilson Lines and Wilson Loops |
|
|
696 | (1) |
|
9.1.3 Quantization of Nonabelian Gauge Theories |
|
|
697 | (1) |
|
9.2 Quantum Chromodynamics |
|
|
698 | (17) |
|
9.2.1 QCD Functional Integral |
|
|
698 | (3) |
|
9.2.2 Renormalization in QCD |
|
|
701 | (2) |
|
9.2.3 Running Coupling and Running Quark Mass |
|
|
703 | (3) |
|
|
706 | (2) |
|
|
708 | (7) |
|
|
715 | (4) |
|
9.4 Introduction to the Standard Model |
|
|
719 | (9) |
|
9.4.1 Electroweak Symmetry Breaking |
|
|
719 | (3) |
|
|
722 | (3) |
|
|
725 | (1) |
|
|
726 | (2) |
|
|
728 | (26) |
|
|
728 | (1) |
|
A.2 Notation and Useful Results |
|
|
728 | (6) |
|
|
729 | (1) |
|
A.2.2 Dirac Delta Function and Jacobians |
|
|
729 | (1) |
|
|
730 | (1) |
|
A.2.4 Cauchy's Integral Theorem |
|
|
730 | (1) |
|
|
731 | (1) |
|
A.2.6 Exactness, Conservative Vector Fields and Integrating Factors |
|
|
731 | (1) |
|
A.2.7 Tensor and Exterior Products |
|
|
732 | (2) |
|
|
734 | (2) |
|
A.4 Euclidean Space Conventions |
|
|
736 | (2) |
|
A.5 Feynman Parameterization |
|
|
738 | (1) |
|
A.6 Dimensional Regularization |
|
|
739 | (4) |
|
A.7 Group Theory and Lie Groups |
|
|
743 | (9) |
|
A.7.1 Elements of Group Theory |
|
|
743 | (2) |
|
|
745 | (3) |
|
A.7.3 Unitary Representations of Lie Groups |
|
|
748 | (4) |
|
|
752 | (2) |
References |
|
754 | (10) |
Index |
|
764 | |