Muutke küpsiste eelistusi

Introduction to Quasigroups and Their Representations [Kõva köide]

(Iowa State University, Ames, USA)
  • Formaat: Hardback, 352 pages, kõrgus x laius: 234x156 mm, kaal: 810 g, 14 Illustrations, black and white
  • Sari: Studies in Advanced Mathematics
  • Ilmumisaeg: 15-Nov-2006
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-10: 1584885378
  • ISBN-13: 9781584885375
Teised raamatud teemal:
  • Formaat: Hardback, 352 pages, kõrgus x laius: 234x156 mm, kaal: 810 g, 14 Illustrations, black and white
  • Sari: Studies in Advanced Mathematics
  • Ilmumisaeg: 15-Nov-2006
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-10: 1584885378
  • ISBN-13: 9781584885375
Teised raamatud teemal:
Collecting results scattered throughout the literature into one source, An Introduction to Quasigroups and Their Representations shows how representation theories for groups are capable of extending to general quasigroups and illustrates the added depth and richness that result from this extension.

To fully understand representation theory, the first three chapters provide a foundation in the theory of quasigroups and loops, covering special classes, the combinatorial multiplication group, universal stabilizers, and quasigroup analogues of abelian groups. Subsequent chapters deal with the three main branches of representation theory-permutation representations of quasigroups, combinatorial character theory, and quasigroup module theory. Each chapter includes exercises and examples to demonstrate how the theories discussed relate to practical applications. The book concludes with appendices that summarize some essential topics from category theory, universal algebra, and coalgebras.

Long overshadowed by general group theory, quasigroups have become increasingly important in combinatorics, cryptography, algebra, and physics. Covering key research problems, An Introduction to Quasigroups and Their Representations proves that you can apply group representation theories to quasigroups as well.
Quasigroups and Loops
1(34)
Latin squares
2(1)
Equational quasigroups
3(2)
Conjugates
5(2)
Semisymmetry and Homotopy
7(2)
Loops and piques
9(3)
Steiner triple systems I
12(1)
Moufang loops and octonions
13(3)
Triality
16(3)
Normal forms
19(7)
Exercises
26(7)
Notes
33(2)
Multiplication Groups
35(26)
Combinatorial multiplication groups
35(2)
Surjections
37(1)
The diagonal action
38(2)
Inner multiplication groups of piques
40(1)
Loop transversals and right quasigroups
41(5)
Loop transversal codes
46(4)
Universal multiplication groups
50(4)
Universal stabilizers
54(1)
Exercises
55(5)
Notes
60(1)
Central Quasigroups
61(32)
Quasigroup congruences
62(2)
Centrality
64(4)
Nilpotence
68(1)
Central isotopy
69(6)
Central piques
75(2)
Central quasigroups
77(2)
Quasigroups of prime order
79(2)
Stability congruences
81(5)
No-go theorems
86(2)
Exercises
88(4)
Notes
92(1)
Homogeneous Spaces
93(20)
Quasigroup homogeneous spaces
93(5)
Approximate symmetry
98(3)
Macroscopic symmetry
101(3)
Regularity
104(2)
Lagrangean properties
106(4)
Exercises
110(2)
Notes
112(1)
Permutation Representations
113(26)
The category IFSQ
113(3)
Actions as coalgebras
116(4)
Irreducibility
120(1)
The covariety of Q-sets
121(2)
The Burnside algebra
123(5)
An example
128(2)
Idempotents
130(3)
Burnside's Lemma
133(2)
Exercises
135(2)
Problems
137(1)
Notes
137(2)
Character Tables
139(30)
Conjugacy classes
139(1)
Class functions
140(2)
The centralizer ring
142(3)
Convolution of class functions
145(2)
Bose-Mesner and Hecke algebras
147(3)
Quasigroup character tables
150(5)
Orthogonality relations
155(3)
Rank two quasigroups
158(1)
Entropy
159(7)
Exercises
166(1)
Problems
167(1)
Notes
167(2)
Combinatorial Character Theory
169(30)
Congruence lattices
169(3)
Quotients
172(4)
Fusion
176(6)
Induction
182(5)
Linear characters
187(6)
Exercises
193(5)
Problems
198(1)
Notes
198(1)
Schemes and Superschemes
199(26)
Sharp transitivity
199(3)
More no-go theorems
202(5)
Superschemes
207(3)
Superalgebras
210(3)
Tensor squares
213(3)
Relation algebras
216(4)
The Reconstruction Theorem
220(2)
Exercises
222(1)
Problems
223(1)
Notes
224(1)
Permutation Characters
225(20)
Enveloping algebras
225(2)
Structure of enveloping algebras
227(4)
The canonical representation
231(2)
Commutative actions
233(2)
Faithful homogeneous spaces
235(1)
Characters of homogeneous spaces
236(1)
General permutation characters
237(1)
The Ising model
238(2)
Exercises
240(4)
Problems
244(1)
Notes
244(1)
Modules
245(20)
Abelian groups and slice categories
245(3)
Quasigroup modules
248(4)
The Fundamental Theorem
252(2)
Differential calculus
254(3)
Representations in varieties
257(3)
Group representations
260(1)
Exercises
261(2)
Problems
263(1)
Notes
263(2)
Applications of Module Theory
265(20)
Nonassociative powers
265(3)
Exponents
268(2)
Steiner triple systems II
270(3)
The Burnside Problem
273(1)
A free commutative Moufang loop
274(3)
Extensions and cohomology
277(5)
Exercises
282(1)
Problems
283(1)
Notes
284(1)
Analytical Character Theory
285(22)
Functions on finite quasigroups
286(3)
Periodic functions on groups
289(5)
Analytical character theory
294(3)
Almost periodic functions
297(3)
Twisted translation operators
300(1)
Proof of the Existence Theorem
301(3)
Exercises
304(1)
Problems
304(1)
Notes
305(2)
CATEGORICAL CONCEPTS
307(6)
Graphs and categories
307(2)
Natural transformations and functors
309(2)
Limits and colimits
311(2)
UNIVERSAL ALGEBRA
313(4)
Combinatorial universal algebra
313(2)
Categorical universal algebra
315(2)
COALGEBRAS
317(2)
Coalgebras and covaricties
317(1)
Set functors
318(1)
References 319(12)
Index 331


Jonathan D. H. Smith