Muutke küpsiste eelistusi

Introduction to Superstrings and M-Theory 2nd ed. 1999 [Kõva köide]

  • Formaat: Hardback, 587 pages, kõrgus x laius: 235x155 mm, kaal: 2270 g, XVII, 587 p., 1 Hardback
  • Sari: Graduate Texts in Contemporary Physics
  • Ilmumisaeg: 07-Dec-1998
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387985891
  • ISBN-13: 9780387985893
  • Kõva köide
  • Hind: 113,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 133,59 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 587 pages, kõrgus x laius: 235x155 mm, kaal: 2270 g, XVII, 587 p., 1 Hardback
  • Sari: Graduate Texts in Contemporary Physics
  • Ilmumisaeg: 07-Dec-1998
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387985891
  • ISBN-13: 9780387985893
Superstrings - provocative, controversial, possibly untestable, but unarguably one of the most interesting and active areas of research in current physics. Called by some, "the theory of everything", superstrings may solve a problem which has eluded physicists for the past 50 years - the final unification of the two great theories of the twentieth century, general relativity and quantum field theory. Now, here is a course-tested comprehensive introductory graduate text on superstrings which stresses the most current areas of interest, not covered in other presentation, including: - string field theory - multi loops - Teichmueller spaces - conformal field theory - four-dimensional strings The book begins with a simple discussion of point particle theory, and uses the Feynman path integral technique to unify the presentation of superstrings. Prerequisites are an aquaintance with quantum mechanics and relativity. This second edition has been revised and updated throughout.

Arvustused

From the reviews Foundations of Physics, on the first edition: "... the dedicated reader...will be well versed in this fascinating area of theoretical physics." Physics Today, on the first edition: "...presents a pedagogical survey on string theory. It covers material from early developments to present-day research ... divided into three parts ... results of quantization, string field theory, and phenomenology ... an impressive effort..."





FOUNDATIONS OF PHYSICS "Kakus book, at 568 pages, is a comprehensive, self-contained text on string theory[ It] contains useful summaries of mathematical topics such as index theory, cohomology, and Kahler manifolds. This is a book for the really serious student of string theory; the dedicated reader who emerges after page 568 will be well versed in this fascinating area of theoretical physics.

Muu info

Springer Book Archives
Preface vii(4)
Acknowledgments xi
I First Quantization and Path Integrals 1(244)
1 Path Integrals and Point Particles
3(46)
1.1 Why Strings?
3(4)
1.2 Historical Review of Gauge Theory
7(11)
1.3 Path Integrals and Point Particles
18(7)
1.4 Relativistic Point Particles
25(3)
1.5 First and Second Quantization
28(2)
1.6 Faddeev-Popov Quantization
30(4)
1.7 Second Quantization
34(3)
1.8 Harmonic Oscillators
37(3)
1.9 Currents and Second Quantization
40(4)
1.10 Summary
44(3)
References
47(2)
2 Nambu-Goto Strings
49(52)
2.1 Bosonic Strings
49(11)
2.2 Gupta-Bleuler Quantization
60(7)
2.3 Light Cone Quantization
67(3)
2.4 BRST Quantization
70(2)
2.5 Trees
72(6)
2.6 From Path Integrals to Operators
78(6)
2.7 Projective Invariance and Twists
84(3)
2.8 Closed Strings
87(3)
2.9 Ghost Elimination
90(5)
2.10 Summary
95(4)
References
99(2)
3 Superstrings
101(40)
3.1 Supersymmetric Point Particles
101(3)
3.2 Two-Dimensional Supersymmetry
104(7)
3.3 Trees
111(6)
3.4 Local Two-Dimensional Supersymmetry
117(2)
3.5 Quantization
119(4)
3.6 GSO Projection
123(3)
3.7 Superstrings
126(2)
3.8 Light Cone Quantization of the GS Action
128(6)
3.9 Vertices and Trees
134(2)
3.10 Summary
136(3)
References
139(2)
4 Conformal Field Theory and Kac-Moody Algebras
141(37)
4.1 Conformal Field Theory
141(9)
4.2 Superconformal Field Theory
150(5)
4.3 Spin Fields
155(3)
4.4 Superconformal Ghosts
158(7)
4.5 Fermion Vertex
165(2)
4.6 Spinors and Trees
167(3)
4.7 Kac-Moody Algebras
170(4)
4.8 Supersymmetry
174(1)
4.9 Summary
174(3)
References
177(1)
5 Multiloops and Teichmuller Spaces
178(67)
5.1 Unitarity
178(3)
5.2 Single-Loop Amplitude
181(4)
5.3 Harmonic Oscillators
185(7)
5.4 Single-Loop Superstring Amplitudes
192(3)
5.5 Closed Loops
195(5)
5.6 Multiloop Amplitudes
200(10)
5.7 Riemann Surfaces and Teichmuller Spaces
210(7)
5.8 Conformal Anomaly
217(4)
5.9 Superstrings
221(3)
5.10 Determinants and Singularities
224(2)
5.11 Moduli Space and Grassmannians
226(12)
5.12 Summary
238(4)
References
242(3)
II Second Quantization and the Search for Geometry 245(90)
6 Light Cone Field Theory
247(44)
6.1 Why String Field Theory?
247(3)
6.2 Deriving Point Particle Field Theory
250(4)
6.3 Light Cone Field Theory
254(7)
6.4 Interactions
261(6)
6.5 Neumann Function Method
267(5)
6.6 Equivalence of the Scattering Amplitudes
272(3)
6.7 Four-String Interaction
275(5)
6.8 Superstring Field Theory
280(6)
6.9 Summary
286(4)
References
290(1)
7 BRST Field Theory
291(44)
7.1 Covariant String Field Theory
291(6)
7.2 BRST Field Theory
297(3)
7.3 Gauge Fixing
300(3)
7.4 Interactions
303(5)
7.5 Witten's String Field Theory
308(3)
7.6 Proof of Equivalence
311(6)
7.7 Closed Strings and Superstrings
317(11)
7.8 Summary
328(3)
References
331(4)
III Phenomenology and Model Building 335(120)
8 Anomalies and the Atiyah-Singer Theorem
337(36)
8.1 Beyond GUT Phenomenology
337(4)
8.2 Anomalies and Feynman Diagrams
341(5)
8.3 Anomalies in the Functional Formalism
346(2)
8.4 Anomalies and Characteristic Classes
348(5)
8.5 Dirac Index
353(4)
8.6 Gravitational and Gauge Anomalies
357(9)
8.7 Anomaly Cancellation in Strings
366(2)
8.8 Summary
368(4)
References
372(1)
9 Heterotic Strings and Compactification
373(31)
9.1 Compactification
373(5)
9.2 The Heterotic String
378(5)
9.3 Spectrum
383(3)
9.4 Covariant and Fermionic Formulations
386(2)
9.5 Trees
388(3)
9.6 Single-Loop Amplitude
391(4)
9.7 E(8) and Kac-Moody Algebras
395(3)
9.8 Lorentzian Lattices
398(2)
9.9 Summary
400(3)
References
403(1)
10 Calabi-Yau Spaces and Orbifolds
404(51)
10.1 Calabi-Yau Spaces
404(5)
10.2 Review of de Rahm Cohomology
409(4)
10.3 Cohomology and Homology
413(6)
10.4 Kahler Manifolds
419(7)
10.5 Embedding the Spin Connection
426(2)
10.6 Fermion Generations
428(4)
10.7 Wilson Lines
432(2)
10.8 Orbifolds
434(4)
10.9 Four-Dimensional Superstrings
438(11)
10.10 Summary
449(4)
References
453(2)
IV M-Theory 455(90)
11 M-Theory and Duality
457(25)
11.1 Introduction
457(1)
11.2 Duality in Physics
458(2)
11.3 Why Five String Theories?
460(2)
11.4 T-Duality
462(3)
11.5 S-Duality
465(1)
11.5.1 Type IIA Theory
466(3)
11.5.2 Type IIB Theory
469(2)
11.5.3 M-Theory and Type IIB Theory
471(2)
11.5.4 E(8) XXX E(8) Heterotic String
473(1)
11.5.5 Type I Strings
473(3)
11.6 Summary
476(4)
References
480(2)
12 Compactifications and BPS States
482(29)
12.1 BPS States
482(2)
12.2 Supersymmetry and P-Branes
484(4)
12.3 Compactification
488(2)
12.4 Example: D = 6
490(7)
12.4.1 D = 6, N = (2,2) Theory
491(3)
12.4.2 D = 6, N = (1,1) Theories
494(2)
12.4.3 M-Theory in D = 7
496(1)
12.5 Example: D = 4, N = 2 and D = 6, N = 1
497(2)
12.6 Symmetry Enhancement and Tensionless Strings
499(2)
12.7 F-Theory
501(1)
12.8 Example: D = 4
502(2)
12.9 Summary
504(6)
References
510(1)
13 Solitons, D-Branes, and Black Holes
511(34)
13.1 Solitons
511(2)
13.2 Supermembrane Actions
513(3)
13.3 Five-Brane Action
516(1)
13.4 D-Branes
517(4)
13.5 D-Brane Actions
521(4)
13.6 M(atrix) Models and Membranes
525(7)
13.7 Black Holes
532(5)
13.8 Summary
537(5)
13.9 Conclusion
542(2)
References
544(1)
Appendix 545(36)
A.1 A Brief Introduction to Group Theory 545(12)
A.2 A Brief Introduction to General Relativity 557(4)
A.3 A Brief Introduction to the Theory of Forms 561(5)
A.4 A Brief Introduction to Supersymmetry 566(7)
A.5 A Brief Introduction to Supergravity 573(4)
A.6 Notation 577(2)
References 579(2)
Index 581