Preface |
|
vii | (4) |
Acknowledgments |
|
xi | |
I First Quantization and Path Integrals |
|
1 | (244) |
|
1 Path Integrals and Point Particles |
|
|
3 | (46) |
|
|
3 | (4) |
|
1.2 Historical Review of Gauge Theory |
|
|
7 | (11) |
|
1.3 Path Integrals and Point Particles |
|
|
18 | (7) |
|
1.4 Relativistic Point Particles |
|
|
25 | (3) |
|
1.5 First and Second Quantization |
|
|
28 | (2) |
|
1.6 Faddeev-Popov Quantization |
|
|
30 | (4) |
|
|
34 | (3) |
|
|
37 | (3) |
|
1.9 Currents and Second Quantization |
|
|
40 | (4) |
|
|
44 | (3) |
|
|
47 | (2) |
|
|
49 | (52) |
|
|
49 | (11) |
|
2.2 Gupta-Bleuler Quantization |
|
|
60 | (7) |
|
2.3 Light Cone Quantization |
|
|
67 | (3) |
|
|
70 | (2) |
|
|
72 | (6) |
|
2.6 From Path Integrals to Operators |
|
|
78 | (6) |
|
2.7 Projective Invariance and Twists |
|
|
84 | (3) |
|
|
87 | (3) |
|
|
90 | (5) |
|
|
95 | (4) |
|
|
99 | (2) |
|
|
101 | (40) |
|
3.1 Supersymmetric Point Particles |
|
|
101 | (3) |
|
3.2 Two-Dimensional Supersymmetry |
|
|
104 | (7) |
|
|
111 | (6) |
|
3.4 Local Two-Dimensional Supersymmetry |
|
|
117 | (2) |
|
|
119 | (4) |
|
|
123 | (3) |
|
|
126 | (2) |
|
3.8 Light Cone Quantization of the GS Action |
|
|
128 | (6) |
|
|
134 | (2) |
|
|
136 | (3) |
|
|
139 | (2) |
|
4 Conformal Field Theory and Kac-Moody Algebras |
|
|
141 | (37) |
|
4.1 Conformal Field Theory |
|
|
141 | (9) |
|
4.2 Superconformal Field Theory |
|
|
150 | (5) |
|
|
155 | (3) |
|
4.4 Superconformal Ghosts |
|
|
158 | (7) |
|
|
165 | (2) |
|
|
167 | (3) |
|
|
170 | (4) |
|
|
174 | (1) |
|
|
174 | (3) |
|
|
177 | (1) |
|
5 Multiloops and Teichmuller Spaces |
|
|
178 | (67) |
|
|
178 | (3) |
|
5.2 Single-Loop Amplitude |
|
|
181 | (4) |
|
|
185 | (7) |
|
5.4 Single-Loop Superstring Amplitudes |
|
|
192 | (3) |
|
|
195 | (5) |
|
|
200 | (10) |
|
5.7 Riemann Surfaces and Teichmuller Spaces |
|
|
210 | (7) |
|
|
217 | (4) |
|
|
221 | (3) |
|
5.10 Determinants and Singularities |
|
|
224 | (2) |
|
5.11 Moduli Space and Grassmannians |
|
|
226 | (12) |
|
|
238 | (4) |
|
|
242 | (3) |
II Second Quantization and the Search for Geometry |
|
245 | (90) |
|
6 Light Cone Field Theory |
|
|
247 | (44) |
|
6.1 Why String Field Theory? |
|
|
247 | (3) |
|
6.2 Deriving Point Particle Field Theory |
|
|
250 | (4) |
|
6.3 Light Cone Field Theory |
|
|
254 | (7) |
|
|
261 | (6) |
|
6.5 Neumann Function Method |
|
|
267 | (5) |
|
6.6 Equivalence of the Scattering Amplitudes |
|
|
272 | (3) |
|
6.7 Four-String Interaction |
|
|
275 | (5) |
|
6.8 Superstring Field Theory |
|
|
280 | (6) |
|
|
286 | (4) |
|
|
290 | (1) |
|
|
291 | (44) |
|
7.1 Covariant String Field Theory |
|
|
291 | (6) |
|
|
297 | (3) |
|
|
300 | (3) |
|
|
303 | (5) |
|
7.5 Witten's String Field Theory |
|
|
308 | (3) |
|
|
311 | (6) |
|
7.7 Closed Strings and Superstrings |
|
|
317 | (11) |
|
|
328 | (3) |
|
|
331 | (4) |
III Phenomenology and Model Building |
|
335 | (120) |
|
8 Anomalies and the Atiyah-Singer Theorem |
|
|
337 | (36) |
|
8.1 Beyond GUT Phenomenology |
|
|
337 | (4) |
|
8.2 Anomalies and Feynman Diagrams |
|
|
341 | (5) |
|
8.3 Anomalies in the Functional Formalism |
|
|
346 | (2) |
|
8.4 Anomalies and Characteristic Classes |
|
|
348 | (5) |
|
|
353 | (4) |
|
8.6 Gravitational and Gauge Anomalies |
|
|
357 | (9) |
|
8.7 Anomaly Cancellation in Strings |
|
|
366 | (2) |
|
|
368 | (4) |
|
|
372 | (1) |
|
9 Heterotic Strings and Compactification |
|
|
373 | (31) |
|
|
373 | (5) |
|
|
378 | (5) |
|
|
383 | (3) |
|
9.4 Covariant and Fermionic Formulations |
|
|
386 | (2) |
|
|
388 | (3) |
|
9.6 Single-Loop Amplitude |
|
|
391 | (4) |
|
9.7 E(8) and Kac-Moody Algebras |
|
|
395 | (3) |
|
|
398 | (2) |
|
|
400 | (3) |
|
|
403 | (1) |
|
10 Calabi-Yau Spaces and Orbifolds |
|
|
404 | (51) |
|
|
404 | (5) |
|
10.2 Review of de Rahm Cohomology |
|
|
409 | (4) |
|
10.3 Cohomology and Homology |
|
|
413 | (6) |
|
|
419 | (7) |
|
10.5 Embedding the Spin Connection |
|
|
426 | (2) |
|
|
428 | (4) |
|
|
432 | (2) |
|
|
434 | (4) |
|
10.9 Four-Dimensional Superstrings |
|
|
438 | (11) |
|
|
449 | (4) |
|
|
453 | (2) |
IV M-Theory |
|
455 | (90) |
|
|
457 | (25) |
|
|
457 | (1) |
|
|
458 | (2) |
|
11.3 Why Five String Theories? |
|
|
460 | (2) |
|
|
462 | (3) |
|
|
465 | (1) |
|
|
466 | (3) |
|
|
469 | (2) |
|
11.5.3 M-Theory and Type IIB Theory |
|
|
471 | (2) |
|
11.5.4 E(8) XXX E(8) Heterotic String |
|
|
473 | (1) |
|
|
473 | (3) |
|
|
476 | (4) |
|
|
480 | (2) |
|
12 Compactifications and BPS States |
|
|
482 | (29) |
|
|
482 | (2) |
|
12.2 Supersymmetry and P-Branes |
|
|
484 | (4) |
|
|
488 | (2) |
|
|
490 | (7) |
|
12.4.1 D = 6, N = (2,2) Theory |
|
|
491 | (3) |
|
12.4.2 D = 6, N = (1,1) Theories |
|
|
494 | (2) |
|
|
496 | (1) |
|
12.5 Example: D = 4, N = 2 and D = 6, N = 1 |
|
|
497 | (2) |
|
12.6 Symmetry Enhancement and Tensionless Strings |
|
|
499 | (2) |
|
|
501 | (1) |
|
|
502 | (2) |
|
|
504 | (6) |
|
|
510 | (1) |
|
13 Solitons, D-Branes, and Black Holes |
|
|
511 | (34) |
|
|
511 | (2) |
|
13.2 Supermembrane Actions |
|
|
513 | (3) |
|
|
516 | (1) |
|
|
517 | (4) |
|
|
521 | (4) |
|
13.6 M(atrix) Models and Membranes |
|
|
525 | (7) |
|
|
532 | (5) |
|
|
537 | (5) |
|
|
542 | (2) |
|
|
544 | (1) |
Appendix |
|
545 | (36) |
A.1 A Brief Introduction to Group Theory |
|
545 | (12) |
A.2 A Brief Introduction to General Relativity |
|
557 | (4) |
A.3 A Brief Introduction to the Theory of Forms |
|
561 | (5) |
A.4 A Brief Introduction to Supersymmetry |
|
566 | (7) |
A.5 A Brief Introduction to Supergravity |
|
573 | (4) |
A.6 Notation |
|
577 | (2) |
References |
|
579 | (2) |
Index |
|
581 | |