Preface |
|
xiii | |
|
|
1 | (10) |
|
|
1 | (1) |
|
1.2 Historical Overview Of Tracking |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.5 Mathematical Notations |
|
|
4 | (1) |
|
1.6 Projective Geometry Concepts |
|
|
5 | (4) |
|
|
5 | (1) |
|
1.6.2 Projective Transforms |
|
|
5 | (1) |
|
1.6.3 Projective Geometry On This Book |
|
|
6 | (1) |
|
1.6.4 Parallelism And Ideal Points |
|
|
7 | (2) |
|
|
9 | (2) |
|
|
11 | (18) |
|
|
12 | (2) |
|
2.1.1 Camera In The Origin |
|
|
12 | (1) |
|
2.1.2 Camera In Generic Position |
|
|
13 | (1) |
|
|
13 | (1) |
|
2.1.4 Intrinsic Parameters |
|
|
13 | (1) |
|
2.1.5 Dimension Of The Space Of Virtual Cameras |
|
|
13 | (1) |
|
2.2 Camera For Image Synthesis |
|
|
14 | (1) |
|
|
14 | (1) |
|
2.2.2 Clipping And Visibility |
|
|
14 | (1) |
|
2.3 Transformation Of Visualization |
|
|
15 | (2) |
|
2.3.1 Positioning The Camera |
|
|
15 | (1) |
|
2.3.2 Transformation Of Normalization |
|
|
16 | (1) |
|
2.3.3 Perspective Projection |
|
|
16 | (1) |
|
|
16 | (1) |
|
2.4 Comparison With The Basic Model |
|
|
17 | (1) |
|
2.4.1 Intrinsic Parameters |
|
|
17 | (1) |
|
|
18 | (1) |
|
2.4.3 Advantages Over The Basic Model |
|
|
18 | (1) |
|
2.5 Camera For Path Tracing |
|
|
18 | (1) |
|
2.6 Visibility And Ray Casting |
|
|
18 | (1) |
|
2.7 Cameras For Calibration |
|
|
19 | (2) |
|
|
20 | (1) |
|
2.7.2 Projective Notation For Cameras |
|
|
20 | (1) |
|
2.7.3 Generic Projective Camera |
|
|
20 | (1) |
|
2.8 Mapping A Calibrated Camera Into The S3D Library |
|
|
21 | (1) |
|
2.8.1 Specification Of Extrinsic Parameters |
|
|
21 | (1) |
|
2.8.2 Specification Of Intrinsic Parameters |
|
|
21 | (1) |
|
|
22 | (2) |
|
2.9.1 Matchmove Software Functions |
|
|
22 | (1) |
|
2.9.2 Render Software Functions |
|
|
23 | (1) |
|
|
24 | (5) |
|
2.10.1 Code In The Matchmove Software |
|
|
24 | (1) |
|
2.10.2 Code In The Render Software |
|
|
25 | (4) |
|
Chapter 3 Optimization Tools |
|
|
29 | (8) |
|
3.1 Minimize A Function Defined On An Interval |
|
|
29 | (2) |
|
|
31 | (1) |
|
3.3 Non4Jnear Least Squares |
|
|
32 | (1) |
|
3.3.1 Gauss-Newton Method |
|
|
32 | (1) |
|
3.3.2 Levenberg-Marquardt Algorithm |
|
|
33 | (1) |
|
3.4 Minimize The Norm Of A Linear Function Over A Sphere |
|
|
33 | (1) |
|
3.5 Two Stages Optimization |
|
|
34 | (1) |
|
3.6 Robust Model Estimation |
|
|
35 | (2) |
|
|
35 | (1) |
|
3.6.2 Example Of Using The Ransac Algorithm |
|
|
35 | (2) |
|
Chapter 4 Estimating One Camera |
|
|
37 | (26) |
|
4.1 Calibration In Relation To A Set Of 3D Points |
|
|
37 | (1) |
|
4.1.1 Calibration Using Six Matches |
|
|
37 | (1) |
|
4.1.2 Calibration Using More Than Six Matches |
|
|
38 | (1) |
|
4.2 Normalization Of The Points |
|
|
38 | (1) |
|
4.3 Isolation Of Camera Parameters |
|
|
38 | (3) |
|
4.4 Camera For Image Synthesis |
|
|
41 | (1) |
|
4.5 Calibration By Restricted Optimization |
|
|
42 | (2) |
|
4.5.1 Adjusting The Levenberg-Marquardt To The Problem |
|
|
42 | (1) |
|
4.5.2 Parameterization Of Rotations |
|
|
43 | (1) |
|
4.5.3 Parameterization Of The Camera Space |
|
|
43 | (1) |
|
4.6 Problem Points Of Parameterization |
|
|
44 | (1) |
|
4.7 Finding The Intrinsic Parameters |
|
|
44 | (1) |
|
4.8 Calibration Using A Planar Pattern |
|
|
45 | (3) |
|
|
48 | (2) |
|
|
50 | (9) |
|
4.11 Single Camera Calibration Program |
|
|
59 | (2) |
|
4.12 Six Points Single Camera Calibration Program |
|
|
61 | (2) |
|
Chapter 5 Estimating Two Cameras |
|
|
63 | (16) |
|
5.1 Representation Of Relative Positioning |
|
|
63 | (1) |
|
|
64 | (1) |
|
5.3 Other Projective Model |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
5.6 The 8-Points Algorithm |
|
|
65 | (2) |
|
|
66 | (1) |
|
5.6.2 Using More Than 8 Points |
|
|
66 | (1) |
|
|
66 | (1) |
|
5.7 Normalized 8-Points Algorithm |
|
|
67 | (1) |
|
5.8 Finding The Extrinsic Parameters |
|
|
67 | (2) |
|
5.8.1 Adding Clipping To The Model |
|
|
68 | (1) |
|
5.8.2 Three-Dimensional Reconstruction |
|
|
69 | (1) |
|
|
69 | (3) |
|
|
72 | (7) |
|
Chapter 6 Feature Tracking |
|
|
79 | (6) |
|
|
79 | (1) |
|
6.2 Kanade-Lucas-Tomasi Algorithm |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (3) |
|
Chapter 7 Estimating Many Cameras |
|
|
85 | (70) |
|
|
85 | (1) |
|
|
86 | (1) |
|
7.3 Calibration In Three Steps |
|
|
86 | (1) |
|
7.4 Three-Step Calibration Problems |
|
|
87 | (1) |
|
7.5 Making The Calibration Of Small Sequences Robust |
|
|
87 | (2) |
|
7.5.1 Solution To The Problem Of Step 1 |
|
|
88 | (1) |
|
7.5.2 Solution To The Problem Of Step 2 |
|
|
88 | (1) |
|
7.5.3 Solution To The Problem In Step 3 |
|
|
89 | (1) |
|
7.6 Choice Of Base Columns |
|
|
89 | (1) |
|
|
90 | (1) |
|
7.8 Representation Of A Configuration |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
7.11 Decomposition Of The Video Into Fragments |
|
|
92 | (1) |
|
7.12 Junction Of Fragments |
|
|
93 | (2) |
|
7.12.1 Alignment Of Fragments |
|
|
93 | (1) |
|
7.12.2 Compatibility Of Scales |
|
|
94 | (1) |
|
7.12.3 Robust Scale Compatibility |
|
|
94 | (1) |
|
7.13 Off-Line Augmented Reality |
|
|
95 | (1) |
|
7.14 Global Optimization By Relaxation |
|
|
95 | (2) |
|
|
97 | (54) |
|
7.15.1 Bundle Adjustment Api |
|
|
97 | (3) |
|
7.15.2 Bundle Adjustment Code |
|
|
100 | (4) |
|
|
104 | (1) |
|
|
105 | (6) |
|
|
111 | (1) |
|
7.15.6 Features List Code |
|
|
112 | (5) |
|
7.15.7 Sequence Of Frames Api |
|
|
117 | (2) |
|
7.15.8 Sequence Of Frames Code |
|
|
119 | (18) |
|
|
137 | (3) |
|
|
140 | (11) |
|
|
151 | (1) |
|
|
152 | (3) |
|
|
155 | (12) |
|
|
155 | (1) |
|
|
156 | (5) |
|
8.3 Point Cloud Definer Program |
|
|
161 | (3) |
|
8.4 Point Cloud Calib Program |
|
|
164 | (3) |
|
Chapter 9 Light Transport And Monte Carlo |
|
|
167 | (22) |
|
|
167 | (2) |
|
9.2 The Invariance Of The Radiance |
|
|
169 | (1) |
|
9.3 The Brdf And The Rendering Equation |
|
|
169 | (1) |
|
9.4 Other Definition For The Rendering Equation |
|
|
170 | (1) |
|
|
171 | (1) |
|
9.5.1 The Perfect Lambertian Surface Brdf |
|
|
171 | (1) |
|
9.5.2 The Perfect Mirror Brdf |
|
|
171 | (1) |
|
9.5.3 The Modified Blinn-Phong's Brdf |
|
|
171 | (1) |
|
9.6 Numerical Approximation |
|
|
172 | (1) |
|
9.7 Monte Carlo Integration Method |
|
|
172 | (1) |
|
|
173 | (1) |
|
9.9 Uniform Sampling Over A Hemisphere |
|
|
174 | (1) |
|
9.10 Splitting The Direct And Indirect Illumination |
|
|
174 | (2) |
|
9.11 Polygonal Luminaries |
|
|
176 | (1) |
|
|
177 | (8) |
|
|
177 | (1) |
|
|
178 | (3) |
|
|
181 | (1) |
|
|
182 | (3) |
|
|
185 | (2) |
|
|
187 | (2) |
|
Chapter 10 Image-Based Lighting |
|
|
189 | (30) |
|
|
189 | (1) |
|
10.2 Reconstructing The Hdr Radiance Map |
|
|
189 | (2) |
|
|
191 | (1) |
|
10.4 Recovering An Hdr Radiance Map |
|
|
191 | (1) |
|
|
191 | (1) |
|
10.6 Conversions Between Ldr And Hdr Images |
|
|
192 | (1) |
|
10.7 From Hdr Pictures To Equirectangular Projections |
|
|
192 | (2) |
|
10.8 Orienting The Radiance Dome |
|
|
194 | (2) |
|
10.9 Rendering Using A Radiance Map |
|
|
196 | (1) |
|
10.10 Interaction Between The Real And Virtual Scenes |
|
|
196 | (2) |
|
10.10.1 Modeling The Brdf Of The Local Scene |
|
|
197 | (1) |
|
10.10.2 Differential Rendering |
|
|
198 | (1) |
|
|
198 | (12) |
|
|
198 | (1) |
|
|
199 | (2) |
|
10.11.3 Image-Based Light Api |
|
|
201 | (1) |
|
10.11.4 Image-Based Light Code |
|
|
202 | (4) |
|
|
206 | (1) |
|
|
206 | (2) |
|
10.11.7 Dome Path Tracing Api |
|
|
208 | (1) |
|
10.11.8 Dome Path Tracing Code |
|
|
209 | (1) |
|
10.12 Polyshadow Color Adjust Program |
|
|
210 | (2) |
|
10.13 Visual Effects Program |
|
|
212 | (4) |
|
|
216 | (3) |
Bibliography |
|
219 | (4) |
Index |
|
223 | |