Muutke küpsiste eelistusi

Introductory Circuit Analysis 13th edition [Pehme köide]

  • Formaat: Paperback / softback, 1216 pages, kõrgus x laius x paksus: 10x10x10 mm, kaal: 2420 g
  • Ilmumisaeg: 09-Sep-2015
  • Kirjastus: Pearson
  • ISBN-10: 0133923606
  • ISBN-13: 9780133923605
Teised raamatud teemal:
  • Formaat: Paperback / softback, 1216 pages, kõrgus x laius x paksus: 10x10x10 mm, kaal: 2420 g
  • Ilmumisaeg: 09-Sep-2015
  • Kirjastus: Pearson
  • ISBN-10: 0133923606
  • ISBN-13: 9780133923605
Teised raamatud teemal:

For courses in DC/AC circuits: conventional flow

The Latest Insights in Circuit Analysis

Introductory Circuit Analysis, the number one acclaimed text in the field for over three decades, is a clear and interesting information source on a complex topic. TheThirteenth Edition contains updated insights on the highly technical subject, providing readers with the most current information in circuit analysis. With updated software components and challenging review questions at the end of each chapter, this text engages readers in a profound understanding of Circuit Analysis.

1 Introduction
1(32)
1.1 The Electrical/Electronics Industry
1(2)
1.2 A Brief History
3(4)
1.3 Units of Measurement
7(2)
1.4 Systems of Units
9(2)
1.5 Significant Figures, Accuracy, and Rounding Off
11(2)
1.6 Powers of Ten
13(3)
1.7 Fixed-Point, Floating-Point, Scientific, and Engineering Notation
16(2)
1.8 Conversion Between Levels of Powers of Ten
18(2)
1.9 Conversion Within and Between Systems of Units
20(2)
1.10 Symbols
22(1)
1.11 Conversion Tables
22(1)
1.12 Calculators
23(4)
1.13 Computer Analysis
27(6)
2 Voltage and Current
33(34)
2.1 Introduction
33(1)
2.2 Atoms and Their Structure
33(3)
2.3 Voltage
36(3)
2.4 Current
39(3)
2.5 Voltage Sources
42(10)
2.6 Ampere-Hour Rating
52(1)
2.7 Battery Life Factors
53(2)
2.8 Conductors and Insulators
55(1)
2.9 Semiconductors
56(1)
2.10 Ammeters and Voltmeters
56(3)
2.11 Applications
59(5)
2.12 Computer Analysis
64(3)
3 Resistance
67(38)
3.1 Introduction
67(1)
3.2 Resistance: Circular Wires
68(3)
3.3 Wire Tables
71(3)
3.4 Temperature Effects
74(3)
3.5 Types of Resistors
77(5)
3.6 Color Coding and Standard Resistor Values
82(5)
3.7 Conductance
87(1)
3.8 Ohmmeters
88(1)
3.9 Resistance: Metric Units
89(2)
3.10 The Fourth Element---The Memristor
91(1)
3.11 Superconductors
92(2)
3.12 Thermistors
94(1)
3.13 Photoconductive Cell
95(1)
3.14 Varistors
95(1)
3.15 Applications
96(9)
4 Ohm's Law, Power, and Energy
105(38)
4.1 Introduction
105(1)
4.2 Ohm's Law
105(3)
4.3 Plotting Ohm's Law
108(3)
4.4 Power
111(2)
4.5 Energy
113(4)
4.6 Efficiency
117(3)
4.7 Circuit Breakers, GFCIs, and Fuses
120(1)
4.8 Applications
121(8)
4.9 Computer Analysis
129(14)
5 Series dc Circuits
143(56)
5.1 Introduction
143(1)
5.2 Series Resistors
144(3)
5.3 Series Circuits
147(5)
5.4 Power Distribution in a Series Circuit
152(1)
5.5 Voltage Sources in Series
153(2)
5.6 Kirchhoff's Voltage Law
155(4)
5.7 Voltage Division in a Series Circuit
159(4)
5.8 Interchanging Series Elements
163(1)
5.9 Notation
164(4)
5.10 Ground Connection Awareness
168(2)
5.11 Voltage Regulation and the Internal Resistance of Voltage Sources
170(5)
5.12 Loading Effects of Instruments
175(2)
5.13 Protoboards (Breadboards)
177(1)
5.14 Applications
178(5)
5.15 Computer Analysis
183(16)
6 Parallel dc Circuits
199(56)
6.1 Introduction
199(1)
6.2 Parallel Resistors
199(10)
6.3 Parallel Circuits
209(5)
6.4 Power Distribution in a Parallel Circuit
214(2)
6.5 Kirchhoff's Current Law
216(4)
6.6 Current Divider Rule
220(6)
6.7 Voltage Sources in Parallel
226(1)
6.8 Open and Short Circuits
227(3)
6.9 Voltmeter Loading Effects
230(2)
6.10 Summary Table
232(1)
6.11 Troubleshooting Techniques
233(1)
6.12 Protoboards (Breadboards)
234(1)
6.13 Applications
235(6)
6.14 Computer Analysis
241(14)
7 Series-Parallel Circuits
255(42)
7.1 Introduction
255(1)
7.2 Series-Parallel Networks
255(1)
7.3 Reduce and Return Approach
256(3)
7.4 Block Diagram Approach
259(3)
7.5 Descriptive Examples
262(7)
7.6 Ladder Networks
269(2)
7.7 Voltage Divider Supply (Unloaded and Loaded)
271(3)
7.8 Potentiometer Loading
274(2)
7.9 Impact of Shorts and Open Circuits
276(3)
7.10 Ammeter, Voltmeter and Ohmmeter Design
279(4)
7.11 Applications
283(4)
7.12 Computer Analysis
287(10)
8 Methods of Analysis and Selected Topics (dc)
297(62)
8.1 Introduction
297(1)
8.2 Current Sources
298(6)
8.3 Branch-Current Analysis
304(6)
8.4 Mesh Analysis (General Approach)
310(6)
8.5 Mesh Analysis (Format Approach)
316(4)
8.6 Nodal Analysis (General Approach)
320(8)
8.7 Nodal Analysis (Format Approach)
328(4)
8.8 Bridge Networks
332(3)
8.9 Y-Δ (T-π) and Δ-Y (π-T) Conversions
335(6)
8.10 Applications
341(6)
8.11 Computer Analysis
347(12)
9 Network Theorems
359(54)
9.1 Introduction
359(1)
9.2 Superposition Theorem
359(7)
9.3 Thevenin's Theorem
366(13)
9.4 Norton's Theorem
379(4)
9.5 Maximum Power Transfer Theorem
383(9)
9.6 Millman's Theorem
392(3)
9.7 Substitution Theorem
395(2)
9.8 Reciprocity Theorem
397(1)
9.9 Computer Analysis
398(15)
10 Capacitors
413(66)
10.1 Introduction
413(1)
10.2 The Electric Field
413(2)
10.3 Capacitance
415(4)
10.4 Capacitors
419(12)
10.5 Transients in Capacitive Networks: The Charging Phase
431(9)
10.6 Transients in Capacitive Networks: The Discharging Phase
440(6)
10.7 Initial Conditions
446(3)
10.8 Instantaneous Values
449(1)
10.9 Thevenin Equivalent: τ = RThC
450(3)
10.10 The Current ic
453(2)
10.11 Capacitors in Series and in Parallel
455(4)
10.12 Energy Stored by a Capacitor
459(1)
10.13 Stray Capacitances
459(1)
10.14 Applications
460(5)
10.15 Computer Analysis
465(14)
11 Inductors
479(50)
11.1 Introduction
479(1)
11.2 Magnetic Field
479(5)
11.3 Inductance
484(6)
11.4 Induced Voltage νL
490(2)
11.5 R-L Transients: The Storage Phase
492(3)
11.6 Initial Conditions
495(2)
11.7 R-L Transients: The Release Phase
497(5)
11.8 Thevenin Equivalent: τ = L/RTh
502(2)
11.9 Instantaneous Values
504(1)
11.10 Average Induced Voltage: νLav
505(2)
11.11 Inductors in Series and in Parallel
507(1)
11.12 Steady-State Conditions
508(2)
11.13 Energy Stored by an Inductor
510(1)
11.14 Applications
511(3)
11.15 Computer Analysis
514(15)
12 Magnetic Circuits
529(26)
12.1 Introduction
529(1)
12.2 Magnetic Field
529(1)
12.3 Reluctance
530(1)
12.4 Ohm's Law for Magnetic Circuits
530(1)
12.5 Magnetizing Force
531(1)
12.6 Hysteresis
532(4)
12.7 Ampere's Circuital Law
536(1)
12.8 Flux Φ
537(1)
12.9 Series Magnetic Circuits: Determining NI
537(4)
12.10 Air Gaps
541(2)
12.11 Series-Parallel Magnetic Circuits
543(2)
12.12 Determining Φ
545(2)
12.13 Applications
547(8)
13 Sinusoidal Alternating Waveforms
555(52)
13.1 Introduction
555(1)
13.2 Sinusoidal ac Voltage Characteristics and Definitions
556(3)
13.3 Frequency Spectrum
559(4)
13.4 The Sinusoidal Waveform
563(4)
13.5 General Format for the Sinusoidal Voltage or Current
567(3)
13.6 Phase Relations
570(6)
13.7 Average Value
576(6)
13.8 Effective (rms) Values
582(6)
13.9 Converters and Inverters
588(3)
13.10 Ac Meters and Instruments
591(3)
13.11 Applications
594(3)
13.12 Computer Analysis
597(10)
14 The Basic Elements and Phasors
607
14.1 Introduction
607(3)
14.2 Response of Basic R, L, and C Elements to a Sinusoidal Voltage or Current
610(7)
14.3 Frequency Response of the Basic Elements
617(6)
14.4 Average Power and Power Factor
623(6)
14.5 Complex Numbers
629(1)
14.6 Rectangular Form
629(1)
14.7 Polar Form
630(1)
14.8 Conversion Between Forms
631(2)
14.9 Mathematical Operations with Complex Numbers
633(6)
14.10 Calculator Methods with Complex Numbers
639(2)
14.11 Phasors
641(7)
14.12 Computer Analysis
648
15 Series ac Circuits
65(5)
15.1 Introduction
657(1)
15.2 Resistive Elements
658(1)
15.3 Inductive Elements
659(2)
15.4 Capacitive Elements
661(2)
15.5 Impedance Diagram
663(1)
15.6 Series Configuration
664(7)
15.7 Voltage Divider Rule
671(3)
15.8 Frequency Response for Series ac Circuits
674(13)
15.9 Summary: Series ac Circuits
687(1)
15.10 Phase Measurements
687(3)
15.11 Applications
690(4)
15.12 Computer Analysis
694
16 Parallel ac Circuits
70(679)
16.1 Introduction
707(1)
16.2 Total Impedance
707(2)
16.3 Total Admittance
709(4)
16.4 Parallel ac Networks
713(7)
16.5 Current Divider Rule
720(1)
16.6 Frequency Response of Parallel Elements
720(10)
16.7 Summary: Parallel ac Networks
730(1)
16.8 Equivalent Circuits
731(4)
16.9 Applications
735(4)
16.10 Computer Analysis
739(10)
17 Series-Parallel ac Networks
749(30)
17.1 Introduction
749(1)
17.2 Illustrative Examples
749(10)
17.3 Ladder Networks
759(1)
17.4 Grounding
760(3)
17.5 Applications
763(3)
17.6 Computer Analysis
766(13)
18 Methods of Analysis and Selected Topics (ac)
779(42)
18.1 Introduction
779(1)
18.2 Independent Versus Dependent (Controlled) Sources
779(1)
18.3 Source Conversions
780(3)
18.4 Mesh Analysis
783(7)
18.5 Nodal Analysis
790(10)
18.6 Bridge Networks (ac)
800(5)
18.7 Δ-Y, Y-Δ Conversions
805(4)
18.8 Computer Analysis
809(12)
19 Network Theorems (ac)
821(48)
19.1 Introduction
821(1)
19.2 Superposition Theorem
821(8)
19.3 Thevenin's Theorem
829(12)
19.4 Norton's Theorem
841(6)
19.5 Maximum Power Transfer Theorem
847(4)
19.6 Substitution, Reciprocity, and Millman's Theorems
851(1)
19.7 Application
852(2)
19.8 Computer Analysis
854(15)
20 Power (ac)
869(38)
20.1 Introduction
869(1)
20.2 General Equation
869(1)
20.3 Resistive Circuit
870(2)
20.4 Apparent Power
872(2)
20.5 Inductive Circuit and Reactive Power
874(3)
20.6 Capacitive Circuit
877(2)
20.7 The Power Triangle
879(2)
20.8 The Total P, Q, and S
881(5)
20.9 Power-Factor Correction
886(5)
20.10 Power Meters
891(1)
20.11 Effective Resistance
891(3)
20.12 Applications
894(3)
20.13 Computer Analysis
897(10)
21 Resonance
907(48)
21.1 Introduction
907(2)
21.2 Series Resonant Circuit
909(2)
21.3 The Quality Factor (Q)
911(2)
21.4 ZT Versus Frequency
913(2)
21.5 Selectivity
915(2)
21.6 VR, VL, and Vc
917(2)
21.7 Practical Considerations
919(1)
21.8 Summary
919(1)
21.9 Examples (Series Resonance)
920(2)
21.10 Parallel Resonant Circuit
922(4)
21.11 Selectivity Curve for Parallel Resonant Circuits
926(3)
21.12 Effect of Q1 ≥ 10
929(3)
21.13 Summary Table
932(1)
21.14 Examples (Parallel Resonance)
933(7)
21.15 Applications
940(3)
21.16 Computer Analysis
943(12)
22 Decibels, Filters, and Bode Plots
955(78)
22.1 Introduction
955(5)
22.2 Properties of Logarithms
960(1)
22.3 Decibels
961(6)
22.4 Filters
967(1)
22.5 R-C Low-Pass Filter
968(5)
22.6 R-C High-Pass Filter
973(3)
22.7 Band-Pass Filters
976(4)
22.8 Band-Stop Filters
980(2)
22.9 Double-Tuned Filter
982(2)
22.10 Other Filter Configurations
984(3)
22.11 Bode Plots
987(7)
22.12 Sketching the Bode Response
994(5)
22.13 Low-Pass Filter with Limited Attenuation
999(4)
22.14 High-Pass Filter with Limited Attenuation
1003(5)
22.15 Additional Properties of Bode Plots
1008(7)
22.16 Crossover Networks
1015(1)
22.17 Applications
1016(6)
22.18 Computer Analysis
1022(11)
23 Transformers
1033(44)
23.1 Introduction
1033(1)
23.2 Mutual Inductance
1033(3)
23.3 The Iron-Core Transformer
1036(4)
23.4 Reflected Impedance and Power
1040(2)
23.5 Impedance Matching, Isolation, and Displacement
1042(4)
23.6 Equivalent Circuit (Iron-Core Transformer)
1046(3)
23.7 Frequency Considerations
1049(1)
23.8 Series Connection of Mutually Coupled Coils
1050(3)
23.9 Air-Core Transformer
1053(3)
23.10 Nameplate Data
1056(1)
23.11 Types of Transformers
1057(2)
23.12 Tapped and Multiple-Load Transformers
1059(1)
23.13 Networks with Magnetically Coupled Coils
1060(1)
23.14 Current Transformers
1061(1)
23.15 Applications
1062(8)
23.16 Computer Analysis
1070(7)
24 Polyphase Systems
1077(40)
24.1 Introduction
1077(1)
24.2 Three-Phase Generator
1078(1)
24.3 Y-Connected Generator
1079(2)
24.4 Phase Sequence (Y-Connected Generator)
1081(2)
24.5 Y-Connected Generator with a Y-Connected Load
1083(2)
24.6 Y-Δ System
1085(2)
24.7 Δ-Connected Generator
1087(1)
24.8 Phase Sequence (Δ-Connected Generator)
1088(1)
24.9 Δ- Δ, Δ-Y Three-Phase Systems
1088(2)
24.10 Power
1090(6)
24.11 Three-Wattmeter Method
1096(1)
24.12 Two-Wattmeter Method
1097(3)
24.13 Unbalanced, Three-Phase, Four-Wire, Y-Connected Load
1100(2)
24.14 Unbalanced, Three-Phase, Three-Wire, Y-Connected Load
1102(3)
24.15 Residential and Industrial Service Distribution Systems
1105(12)
25 Pulse Waveforms and the R-C Response
1117(28)
25.1 Introduction
1117(1)
25.2 Ideal Versus Actual
1117(4)
25.3 Pulse Repetition Rate and Duty Cycle
1121(3)
25.4 Average Value
1124(1)
25.5 Transient R-C Networks
1125(2)
25.6 R-C Response to Square-Wave Inputs
1127(7)
25.7 Oscilloscope Attenuator and Compensating Probe
1134(1)
25.8 Application
1135(3)
25.9 Computer Analysis
1138(7)
26 Nonsinusoidal Circuits
1145(26)
26.1 Introduction
1145(1)
26.2 Fourier Series
1146(7)
26.3 Fourier Expansion of a Square Wave
1153(2)
26.4 Fourier Expansion of a Half-Wave Rectified Waveform
1155(1)
26.5 Fourier Spectrum
1156(1)
26.6 Circuit Response to a Nonsinusoidal Input
1157(6)
26.7 Addition and Subtraction of Nonsinusoidal Waveforms
1163(1)
26.8 Computer Analysis
1164(7)
Appendixes
1171(25)
Appendix A Conversion Factors
1172(3)
Appendix B Determinants
1175(8)
Appendix C Greek Alphabet
1183(1)
Appendix D Magnetic Parameter Conversions
1184(1)
Appendix E Maximum Power Transfer Conditions
1185(2)
Appendix F Answers to Selected Odd-Numbered Problems
1187(9)
Index 1196
Robert Boylestad is a best selling author/teacher who writes a wide variety of textbooks.