Muutke küpsiste eelistusi

Introductory Nanoscience: Physical and Chemical Concepts [Pehme köide]

(University of Notre Dame)
  • Formaat: Paperback / softback, 464 pages, kõrgus x laius: 276x219 mm, kaal: 860 g, 210 Line drawings, color; 40 Halftones, color; 250 Illustrations, color
  • Ilmumisaeg: 19-Aug-2011
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0815344244
  • ISBN-13: 9780815344247
Teised raamatud teemal:
  • Pehme köide
  • Hind: 57,40 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 80,80 €
  • Säästad 29%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Raamatukogudele
  • Formaat: Paperback / softback, 464 pages, kõrgus x laius: 276x219 mm, kaal: 860 g, 210 Line drawings, color; 40 Halftones, color; 250 Illustrations, color
  • Ilmumisaeg: 19-Aug-2011
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0815344244
  • ISBN-13: 9780815344247
Teised raamatud teemal:
Designed for upper-level undergraduate and graduate students, Introductory Nanoscience asks key questions about the quantitative concepts that underlie this new field. How are the optical and electrical properties of nanomaterials dependent upon size, shape, and morphology? How do we construct nanometer-sized objects? Using solved examples throughout the chapters, this textbook shows to what extent we may predict the behavior and functionality of nanomaterials by understanding how their properties change with scale. Fundamental concepts are reinforced through end-of-chapter problems and further reading. Students will appreciate complete derivations of relevant equations, simplified assumptions for practical calculations, listed references, and a historical overview about the development of colloidal quantum dots.
Preface vii
1 Introduction
1(8)
1.1 Preliminaries
1(2)
1.2 Overview
3(3)
1.3 Further reading
6(1)
1.4 Thought problems
7(1)
1.5 References
8(1)
2 Structure
9(20)
2.1 Introduction
9(1)
2.2 Basic properties
9(4)
2.3 Examples of crystal structures
13(5)
2.4 Miller indices
18(3)
2.5 Surface-to-volume ratio
21(4)
2.6 Summary
25(1)
2.7 Thought problems
26(1)
2.8 References
27(2)
3 Length Scales
29(32)
3.1 Introduction
29(1)
3.2 de Broglie wavelength
29(3)
3.3 The Bohr radius
32(3)
3.4 Excitons
35(5)
3.5 Confinement regimes
40(2)
3.6 Metals
42(1)
3.7 The Fermi energy, Fermi velocity, and Kubo gap
43(6)
3.8 The mean free path in metals
49(6)
3.9 Charging energy
55(1)
3.10 Summary
56(1)
3.11 Thought problems
57(2)
3.12 References
59(2)
4 Types of Nanostructures
61(12)
4.1 Introduction
61(10)
4.2 Bottom-up or top-down
71(1)
4.3 Summary
71(1)
4.4 Thought problems
72(1)
4.5 References
72(1)
5 Absorption and Emission Basics
73(28)
5.1 Introduction
73(1)
5.2 Exponential attenuation law
73(3)
5.3 Other conventions
76(1)
5.4 Relating εmolar to σ
77(2)
5.5 Estimating α and σ
79(6)
5.6 Using the absorption cross section
85(3)
5.7 Emission processes
88(2)
5.8 Einstein A and B coefficients
90(3)
5.9 Relating absorption cross sections to excited-state lifetimes
93(3)
5.10 Summary
96(1)
5.11 Thought problems
96(3)
5.12 References
99(1)
5.13 Further reading
99(2)
6 A Quantum Mechanics Review
101(36)
6.1 Introduction
101(1)
6.2 Wavefunctions
101(4)
6.3 Observables and the correspondence principle
105(3)
6.4 Eigenvalues and eigenfunctions
108(1)
6.5 Wavepackets
109(1)
6.6 Expectation values
110(2)
6.7 Dirac bra-ket notation
112(2)
6.8 Operator math
114(1)
6.9 More on operators
115(1)
6.10 Commutators
115(3)
6.11 More commutator relationships
118(1)
6.12 The uncertainty principle
119(1)
6.13 The Schrodinger equation
119(3)
6.14 The postulates of quantum mechanics
122(2)
6.15 Time-independent, nondegenerate perturbation theory
124(9)
6.16 Summary
133(1)
6.17 Thought problems
133(3)
6.18 References
136(1)
6.19 Further reading
136(1)
7 Model Quantum Mechanics Problems
137(42)
7.1 Introduction
137(1)
7.2 Standard model problems
137(9)
7.3 Model problems for wells, wires, and dots
146(29)
7.4 Summary
175(1)
7.5 Thought problems
176(1)
7.6 References
177(1)
7.7 Further reading
178(1)
8 Additional Model Problems
179(24)
8.1 Introduction
179(1)
8.2 Particle in a finite one-dimensional box
179(7)
8.3 Particle in an infinite circular box
186(3)
8.4 Harmonic oscillator
189(9)
8.5 Summary
198(1)
8.6 Thought problems
198(3)
8.7 References
201(1)
8.8 Further reading
201(2)
9 Density of States
203(36)
9.1 Introduction
203(5)
9.2 Density of states for bulk materials, wells, wires, and dots
208(9)
9.3 Population of the conduction and valence bands
217(10)
9.4 Quasi-Fermi levels
227(1)
9.5 Joint density of states
227(7)
9.6 Summary
234(1)
9.7 Thought problems
234(3)
9.8 References
237(1)
9.9 Further reading
237(2)
10 Bands
239(36)
10.1 Introduction
239(1)
10.2 The Kronig-Penney model
239(11)
10.3 Kronig-Penney model with delta-function barriers
250(10)
10.4 Other band models
260(11)
10.5 Metals, semiconductors, and insulators
271(1)
10.6 Summary
271(1)
10.7 Thought problems
272(1)
10.8 References
273(1)
10.9 Further reading
273(2)
11 Time-Dependent Perturbation Theory
275(20)
11.1 Introduction
275(2)
11.2 Time-dependent perturbation theory
277(4)
11.3 Example: A two-level system
281(4)
11.4 Rates
285(3)
11.5 Summary
288(1)
11.6 Appendix
288(3)
11.7 Thought problems
291(3)
11.8 Further reading
294(1)
12 Interband Transitions
295(50)
12.1 Introduction
295(1)
12.2 Preliminaries: -μ E versus -(q/m0)A P
295(2)
12.3 Back to transition probabilities
297(1)
12.4 Bulk semiconductor
298(3)
12.5 Equivalence of H(1) = -(q/m0)A P and H(1) = -μ E
301(2)
12.6 Multiple states
303(2)
12.7 Fermi's golden rule and the associated transition rate
305(1)
12.8 Absorption coefficient α
305(4)
12.9 Transitions in low-dimensional semiconductors
309(34)
12.10 Summary
343(1)
12.11 Thought problems
343(1)
12.12 References
344(1)
12.13 Further reading
344(1)
13 Synthesis
345(30)
13.1 Introduction
345(1)
13.2 Molecular beam epitaxy (MBE)
345(1)
13.3 Colloidal growth of nanocrystals
346(2)
13.4 Semiconductor nanocrystals
348(18)
13.5 Nanowires
366(5)
13.6 Summary
371(1)
13.7 Thought problems
371(1)
13.8 References
372(3)
14 Characterization
375(42)
14.1 Introduction
375(1)
14.2 Anatomy of chemically synthesized nanostructures
375(1)
14.3 Sizing nanostructures
376(30)
14.4 Summary
406(1)
14.5 Characterizing the core's elemental composition
406(1)
14.6 Characterizing the surface
407(4)
14.7 Optical characterization
411(1)
14.8 Summary
412(1)
14.9 Thought problems
413(1)
14.10 References
414(3)
15 Applications
417(24)
15.1 Introduction
417(1)
15.2 Quantum dots
417(13)
15.3 Metal nanostructures
430(6)
15.4 Nanowires
436(1)
15.5 Summary
437(1)
15.6 Thought problems
437(1)
15.7 References
438(2)
15.8 Further reading
440(1)
Appendix 441(2)
Index 443
Masaru Kuno earned his PhD at the Massachusetts Institute of Technology, followed by an NRC postdoctoral fellowship at JILA, University of Colorado at Boulder. He is Associate Professor of Chemistry and Biochemistry at the University of Notre Dame working on the synthesis and optical microscopy of solution-based semiconductor nanowires.