Muutke küpsiste eelistusi

Invariant Manifold Theory for Hydrodynamic Transition [Pehme köide]

  • Formaat: Paperback / softback, 176 pages, kõrgus x laius: 229x152 mm
  • Ilmumisaeg: 16-Jan-2019
  • Kirjastus: Dover Publications Inc.
  • ISBN-10: 048682828X
  • ISBN-13: 9780486828282
Teised raamatud teemal:
  • Pehme köide
  • Hind: 26,34 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 176 pages, kõrgus x laius: 229x152 mm
  • Ilmumisaeg: 16-Jan-2019
  • Kirjastus: Dover Publications Inc.
  • ISBN-10: 048682828X
  • ISBN-13: 9780486828282
Teised raamatud teemal:
Invariant manifold theory serves as a link between dynamical systems theory and turbulence phenomena. This volume consists of research notes by author S. S. Sritharan that develop a theory for the Navier-Stokes equations in bounded and certain unbounded geometries. The main results include spectral theorems and analyticity theorems for semigroups and invariant manifolds.
"This monograph contains a lot of useful information, including much that cannot be found in the standard texts on the Navier-Stokes equations," observed MathSciNet, adding "the book is well worth the reader's attention." The treatment is suitable for researchers and graduate students in the areas of chaos and turbulence theory, hydrodynamic stability, dynamical systems, partial differential equations, and control theory. Topics include the governing equations and the functional framework, the linearized operator and its spectral properties, the monodromy operator and its properties, the nonlinear hydrodynamic semigroup, invariant cone theorem, and invariant manifold theorem. Two helpful appendixes conclude the text.


Suitable for graduate students and professionals, these research notes develop a theory for the Navier-Stokes equations in bounded and certain unbounded geometries. "Well worth the reader's attention." — MathSciNet. 1990 edition.
Preface vii
1 Introduction
1(4)
2 The Governing Equations and the Functional Framework
5(16)
2.1 Functional Framework for Unbounded Domains
8(11)
2.2 Eigenvalue Distribution for the Stokes Operator
19(2)
3 The Linearized Operator and its Spectral Properties
21(18)
3.1 The Stationary Basic Field
21(7)
3.1.1 Exterior Hydrodynamics: Resolutions and Open Problems
25(3)
3.2 Spectral Theory of the Linearized Operator
28(8)
3.3 Spectral Theory of Three-Dimensional Exterior Problem
36(3)
4 The Monodromy Operator and its Properties
39(32)
4.1 The Stokes Semigroup
40(4)
4.2 Semigroup Generated by the Operator
44(3)
4.3 Existence Theorem for Periodic Solutions
47(9)
4.3.1 Karman Vortex Shedding
54(2)
4.4 Characterization of the Monodromy Operator
56(13)
4.5 The Generalized Liouville Formula
69(2)
5 The Nonlinear Hydrodynamic Semigroup
71(14)
5.1 Nonlinear Semigroup for Unbounded Domains
76(9)
6 Invariant Cone Theorem
85(8)
7 Invariant Manifold Theorem
93(18)
A Global Attractors for Two-Dimensional Viscous Flows 111(10)
B Implications of Group Action 121(10)
Bibliography 131(8)
Index 139