|
Introduction and Preliminaries |
|
|
1 | (11) |
|
|
1 | (1) |
|
|
2 | (2) |
|
|
4 | (3) |
|
Linear Operator Equations |
|
|
7 | (2) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (15) |
|
|
11 | (1) |
|
|
12 | (1) |
|
Spectral Theorem---First Form |
|
|
13 | (3) |
|
Spectral Theorem---Second Form |
|
|
16 | (3) |
|
|
19 | (2) |
|
|
21 | (1) |
|
|
21 | (1) |
|
Completely Normal Operators |
|
|
22 | (1) |
|
|
23 | (2) |
|
|
25 | (1) |
|
Analytic Functions of Operators |
|
|
26 | (10) |
|
|
26 | (5) |
|
The Riesz Decomposition Theorem |
|
|
31 | (1) |
|
Invariant Subspaces of Analytic Functions of Operators |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (2) |
|
|
36 | (24) |
|
|
36 | (2) |
|
Invariant Subspaces of Shifts of Multiplicity 1 |
|
|
38 | (8) |
|
Shifts of Arbitrary Multiplicity |
|
|
46 | (4) |
|
Invariant Subspaces of Shifts |
|
|
50 | (3) |
|
|
53 | (4) |
|
|
57 | (2) |
|
|
59 | (1) |
|
Examples of Invariant Subspace Lattices |
|
|
60 | (24) |
|
|
60 | (2) |
|
|
62 | (2) |
|
Lattices of Normal Operators |
|
|
64 | (2) |
|
Two Unicellular Operators |
|
|
66 | (6) |
|
Direct Products of Attainable Lattices |
|
|
72 | (3) |
|
|
75 | (3) |
|
|
78 | (3) |
|
|
81 | (1) |
|
|
82 | (2) |
|
|
84 | (11) |
|
Existence of Invariant Subspaces |
|
|
84 | (3) |
|
|
87 | (1) |
|
|
88 | (2) |
|
Lattices of Compact Operators |
|
|
90 | (2) |
|
|
92 | (1) |
|
|
93 | (2) |
|
Existence of Invariant and Hyperinvariant Subspaces |
|
|
95 | (22) |
|
Operators on Other Spaces |
|
|
95 | (2) |
|
Perturbations of Normal Operators |
|
|
97 | (11) |
|
Quasi-similarity and Invariant Subspaces |
|
|
108 | (2) |
|
|
110 | (3) |
|
|
113 | (1) |
|
|
114 | (3) |
|
Certain Results on von Neumann Algebras |
|
|
117 | (21) |
|
|
117 | (1) |
|
|
118 | (2) |
|
|
120 | (2) |
|
Abelian von Neumann Algebras |
|
|
122 | (5) |
|
The Class of n-normal Operators |
|
|
127 | (9) |
|
|
136 | (1) |
|
|
136 | (2) |
|
Transitive Operator Algebras |
|
|
138 | (29) |
|
Strictly Transitive Algebras |
|
|
138 | (4) |
|
Partial Solutions of the Transitive Algebra Problem |
|
|
142 | (18) |
|
|
160 | (3) |
|
|
163 | (1) |
|
|
164 | (3) |
|
Algebras Associated with Invariant Subspaces |
|
|
167 | (25) |
|
|
167 | (10) |
|
Reflexive Operator Algebras |
|
|
177 | (8) |
|
Triangular Operator Algebras |
|
|
185 | (3) |
|
|
188 | (1) |
|
|
189 | (3) |
|
|
192 | (7) |
|
|
192 | (1) |
|
|
193 | (1) |
|
Existence of Invariant Subspaces |
|
|
194 | (1) |
|
Reducing Subspaces and von Neumann Algebras |
|
|
195 | (1) |
|
Transitive and Reductive Algebras |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
199 | (12) |
|
|
211 | (1) |
|
|
212 | (3) |
|
|
215 | (16) |
|
Some Subsequent Developments |
|
|
221 | (10) |
|
|
221 | (1) |
|
|
222 | (1) |
|
Existence of Invariant Subspaces |
|
|
222 | (3) |
|
Reducing Subspaces and von Neumann algebras |
|
|
225 | (1) |
|
Transitive and Reductive Algebras |
|
|
225 | (2) |
|
|
227 | (1) |
|
Triangular Operator Algebras |
|
|
228 | (3) |
Additional References |
|
231 | |