Muutke küpsiste eelistusi

Inverse Problems for Partial Differential Equations [Kõva köide]

  • Formaat: Hardback, 296 pages, 4 illus.
  • Sari: Applied Mathematical Sciences v.127
  • Ilmumisaeg: 20-Nov-1997
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387982566
  • ISBN-13: 9780387982564
Teised raamatud teemal:
  • Kõva köide
  • Hind: 93,03 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 296 pages, 4 illus.
  • Sari: Applied Mathematical Sciences v.127
  • Ilmumisaeg: 20-Nov-1997
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387982566
  • ISBN-13: 9780387982564
Teised raamatud teemal:
This book is a comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. The reconstruction of the interior structural parameters of machines and of the underground are also discussed together with further scientific and engineering applications. By presenting this data in a readable and informative manner, the book introduces both scientific and engineering researchers and graduate students to significant work done in this area in recent years, relating it to broader themes in mathematical analysis.
Preface vii
Chapter 1 Inverse Problems
1(19)
1.1 The inverse problem of gravimetry
1(4)
1.2 The inverse conductivity problem
5(2)
1.3 Inverse scattering
7(3)
1.4 Tomography and the inverse seismic problem
10(4)
1.5 Inverse spectral problems
14(6)
Chapter 2 Ill-Posed Problems and Regularization
20(19)
2.1 Well-and ill-posed problems
20(3)
2.2 Conditional correctness. Regularization
23(3)
2.3 Construction of regularizers
26(6)
2.4 Convergence of regularization algorithms
32(4)
2.5 Iterative algorithms
36(3)
Chapter 3 Uniqueness and Stability in the Cauchy Problem
39(34)
3.1 The backward parabolic equation
39(9)
3.2 General Carleman type estimates and the Cauchy problem
48(5)
3.3 Elliptic and parabolic equations
53(6)
3.4 Hyperbolic and Schrodinger equations
59(12)
3.5 Open problems
71(2)
Chapter 4 Elliptic Equations: Single Boundary Measurements
73(32)
4.0 Results on elliptic boundary value problems
73(3)
4.1 Inverse gravimetry
76(5)
4.2 Reconstruction of lower-order terms
81(4)
4.3 The inverse conductivity problem
85(8)
4.4 Methods of the theory of one complex variable
93(5)
4.5 Linearization of the coefficients problem
98(2)
4.6 Some problems of nondestructive evaluation
100(3)
4.7 Open problems
103(2)
Chapter 5 Elliptic Equations: Many Boundary Measurements
105(39)
5.0 The Dirichlet-to-Neumann map
105(3)
5.1 Boundary Reconstruction
108(4)
5.2 Reconstruction in XXX
112(2)
5.3 Completeness of products of solutions of PDE
114(4)
5.4 The plane case
118(3)
5.5 Recovery of several coefficients
121(6)
5.6 Nonlinear equations
127(4)
5.7 Discontinuous conductivities
131(6)
5.8 Maxwell's and elasticity systems
137(4)
5.9 Open problems
141(3)
Chapter 6 Scattering Problems
144(19)
6.0 Direct scattering
144(3)
6.1 From A to near field
147(4)
6.2 Scattering by a medium
151(4)
6.3 Scattering by obstacles
155(6)
6.4 Open problems
161(2)
Chapter 7 Integral Geometry and Tomography
163(21)
7.1 The Radon transform and its inverse
163(9)
7.2 The energy integrals methods
172(3)
7.3 Boman's counterexample
175(4)
7.4 The transport equation
179(2)
7.5 Open problems
181(3)
Chapter 8 Hyperbolic Equations
184(33)
8.0 Introduction
184(3)
8.1 The one-dimensional case
187(8)
8.2 Single boundary measurements
195(4)
8.3 Many measurements: use of beam solutions
199(6)
8.4 Many measurements: methods of boundary control
205(6)
8.5 Recovery of discontinuity of the speed of propagation
211(4)
8.6 Open problems
215(2)
Chapter 9 Parabolic Equations
217(29)
9.0 Introduction
217(3)
9.1 Final overdetermination
220(6)
9.2 Lateral overdetermination: single measurements
226(2)
9.3 Lateral overdetermination: many measurements
228(4)
9.4 Discontinuous principal coefficient
232(5)
9.5 Nonlinear equations
237(5)
9.6 Interior sources
242(2)
9.7 Open problems
244(2)
Chapter 10 Some Numerical Methods
246(19)
10.1 Linearization
247(5)
10.2 Variational regularization of the Cauchy problem
252(4)
10.3 Relaxation methods
256(2)
10.4 Layer-stripping
258(3)
10.5 Discrete methods
261(4)
Appendix. Functional Spaces 265(4)
References 269(14)
Index 283