Muutke küpsiste eelistusi

Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms [Kõva köide]

Teised raamatud teemal:
Teised raamatud teemal:
This book provides a full representation of Inverse Synthetic Aperture Radar (ISAR) imagery, which is a popular and  important radar signal processing tool. The book covers all possible aspects of ISAR imaging. The book offers a fair amount of signal processing techniques and radar basics before introducing the inverse problem of ISAR and  the forward problem of Synthetic Aperture Radar (SAR). Important concepts of SAR such as resolution, pulse compression and image formation are given together with associated MATLAB codes.

After providing the fundamentals for ISAR imaging, the book gives the detailed imaging procedures for ISAR imaging with associated MATLAB functions and codes. To enhance the image quality in ISAR imaging, several imaging tricks and fine-tuning procedures such as zero-padding and windowing are also presented. Finally, various real applications of ISAR imagery, like imaging the antenna-platform scattering, are given in a separate chapter. For all these algorithms, MATLAB codes and figures are included. The final chapter considers advanced concepts and trends in ISAR imaging. 

Preface xiii
Acknowledgments xvii
1 Basics of Fourier Analysis
1(32)
1.1 Forward and Inverse Fourier Transform
1(2)
1.1.1 Brief History of FT
1(1)
1.1.2 Forward FT Operation
2(1)
1.1.3 IFT
2(1)
1.2 FT Rules and Pairs
3(2)
1.2.1 Linearity
3(1)
1.2.2 Time Shifting
3(1)
1.2.3 Frequency Shifting
4(1)
1.2.4 Scaling
4(1)
1.2.5 Duality
4(1)
1.2.6 Time Reversal
4(1)
1.2.7 Conjugation
4(1)
1.2.8 Multiplication
4(1)
1.2.9 Convolution
5(1)
1.2.10 Modulation
5(1)
1.2.11 Derivation and Integration
5(1)
1.2.12 Parseval's Relationship
5(1)
1.3 Time-Frequency Representation of a Signal
5(6)
1.3.1 Signal in the Time Domain
6(1)
1.3.2 Signal in the Frequency Domain
6(1)
1.3.3 Signal in the (JTF) Plane
7(4)
1.4 Convolution and Multiplication Using FT
11(1)
1.5 Filtering/Windowing
11(3)
1.6 Data Sampling
14(1)
1.7 DFT and FFT
14(5)
1.7.1 DFT
14(2)
1.7.2 FFT
16(2)
1.7.3 Bandwidth and Resolutions
18(1)
1.8 Aliasing
19(1)
1.9 Importance of FT in Radar Imaging
19(3)
1.10 Effect of Aliasing in Radar Imaging
22(4)
1.11 Matlab Codes
26(5)
References
31(2)
2 Radar Fundamentals
33(46)
2.1 Electromagnetic (EM) Scattering
33(3)
2.2 Scattering from PECs
36(1)
2.3 Radar Cross Section (RCS)
37(5)
2.3.1 Definition of RCS
38(3)
2.3.2 RCS of Simple Shaped Objects
41(1)
2.3.3 RCS of Complex Shaped Objects
42(1)
2.4 Radar Range Equation
42(6)
2.4.1 Bistatic Case
43(5)
2.4.2 Monostatic Case
48(1)
2.5 Range of Radar Detection
48(3)
2.5.1 Signal-to-Noise Ratio (SNR)
50(1)
2.6 Radar Waveforms
51(14)
2.6.1 CW
51(3)
2.6.2 FMCW
54(3)
2.6.3 SFCW
57(3)
2.6.4 Short Pulse
60(2)
2.6.5 Chirp (LFM) Pulse
62(3)
2.7 Pulsed Radar
65(7)
2.7.1 PRF
65(2)
2.7.2 Maximum Range and Range Ambiguity
67(1)
2.7.3 Doppler Frequency
68(4)
2.8 Matlab Codes
72(5)
References
77(2)
3 Synthetic Aperture Radar
79(42)
3.1 SAR Modes
80(1)
3.2 SAR System Design
80(3)
3.3 Resolutions in SAR
83(2)
3.4 SAR Image Formation: Range and Azimuth Compression
85(1)
3.5 Range Compression
86(10)
3.5.1 Matched Filter
86(4)
3.5.2 Ambiguity Function
90(6)
3.6 Pulse Compression
96(6)
3.6.1 Detailed Processing of Pulse Compression
97(3)
3.6.2 Bandwidth, Resolution, and Compression Issues
100(1)
3.6.3 Pulse Compression Example
101(1)
3.7 Azimuth Compression
102(6)
3.7.1 Processing in Azimuth
102(4)
3.7.2 Azimuth Resolution
106(1)
3.7.3 Relation to ISAR
107(1)
3.8 SAR Imaging
108(1)
3.9 Example of SAR Imagery
108(2)
3.10 Problems in SAR Imaging
110(2)
3.10.1 Range Migration
110(1)
3.10.2 Motion Errors
111(1)
3.10.3 Speckle Noise
112(1)
3.11 Advanced Topics in SAR
112(2)
3.11.1 SAR Interferometry
112(1)
3.11.2 SAR Polarimetry
113(1)
3.12 Matlab Codes
114(6)
References
120(1)
4 Inverse Synthetic Aperture Radar Imaging and Its Basic Concepts
121(66)
4.1 SAR versus ISAR
121(4)
4.2 The Relation of Scattered Field to the Image Function in ISAR
125(1)
4.3 One-Dimensional (1D) Range Profile
126(5)
4.4 1D Cross-Range Profile
131(2)
4.5 2D ISAR Image Formation (Small Bandwidth, Small Angle)
133(19)
4.5.1 Range and Cross-Range Resolutions
139(1)
4.5.2 Range and Cross-Range Extends
140(1)
4.5.3 Imaging Multi-Bounces in ISAR
140(4)
4.5.4 Sample Design Procedure for ISAR
144(8)
4.6 2D ISAR Image Formation (Wide Bandwidth, Large Angles)
152(7)
4.6.1 Direct Integration
154(4)
4.6.2 Polar Reformatting
158(1)
4.7 3D ISAR Image Formation
159(10)
4.7.1 Range and Cross-Range Resolutions
165(1)
4.7.2 A Design Example
165(4)
4.8 Matlab Codes
169(16)
References
185(2)
5 Imaging Issues in Inverse Synthetic Aperture Radar
187(44)
5.1 Fourier-Related Issues
187(7)
5.1.1 DFT Revisited
188(3)
5.1.2 Positive and Negative Frequencies in DFT
191(3)
5.2 Image Aliasing
194(2)
5.3 Polar Reformatting Revisited
196(4)
5.3.1 Nearest Neighbor Interpolation
196(2)
5.3.2 Bilinear Interpolation
198(2)
5.4 Zero Padding
200(2)
5.5 Point Spread Function (PSF)
202(3)
5.6 Windowing
205(8)
5.6.1 Common Windowing Functions
205(7)
5.6.2 ISAR Image Smoothing via Windowing
212(1)
5.7 Matlab Codes
213(16)
References
229(2)
6 Range-Doppler Inverse Synthetic Aperture Radar Processing
231(40)
6.1 Scenarios for ISAR
232(5)
6.1.1 Imaging Aerial Targets via Ground-Based Radar
232(2)
6.1.2 Imaging Ground/Sea Targets via Aerial Radar
234(3)
6.2 ISAR Waveforms for Range-Doppler Processing
237(4)
6.2.1 Chirp Pulse Train
238(1)
6.2.2 Stepped Frequency Pulse Train
239(2)
6.3 Doppler Shift's Relation to Cross Range
241(3)
6.3.1 Doppler Frequency Shift Resolution
242(1)
6.3.2 Resolving Doppler Shift and Cross Range
243(1)
6.4 Forming the Range-Doppler Image
244(1)
6.5 ISAR Receiver
245(2)
6.5.1 ISAR Receiver for Chirp Pulse Radar
245(1)
6.5.2 ISAR Receiver for SFCW Radar
246(1)
6.6 Quadradure Detection
247(3)
6.6.1 I-Channel Processing
248(1)
6.6.2 Q-Channel Processing
249(1)
6.7 Range Alignment
250(2)
6.8 Defining the Range-Doppler ISAR Imaging Parameters
252(4)
6.8.1 Image Frame Dimension (Image Extends)
252(1)
6.8.2 Range-Cross-Range Resolution
253(1)
6.8.3 Frequency Bandwidth and the Center Frequency
253(1)
6.8.4 Doppler Frequency Bandwidth
254(1)
6.8.5 PRF
254(1)
6.8.6 Coherent Integration (Dwell) Time
255(1)
6.8.7 Pulse Width
256(1)
6.9 Example of Chirp Pulse-Based Range-Doppler ISAR Imaging
256(6)
6.10 Example of SFCW-Based Range-Doppler ISAR Imaging
262(2)
6.11 Matlab Codes
264(6)
References
270(1)
7 Scattering Center Representation of Inverse Synthetic Aperture Radar
271(28)
7.1 Scattering/Radiation Center Model
272(2)
7.2 Extraction of Scattering Centers
274(13)
7.2.1 Image Domain Formulation
274(9)
7.2.2 Fourier Domain Formulation
283(4)
7.3 Matlab Codes
287(10)
References
297(2)
8 Motion Compensation for Inverse Synthetic Aperture Radar
299(46)
8.1 Doppler Effect Due to Target Motion
300(2)
8.2 Standard MOCOMP Procedures
302(4)
8.2.1 Translational MOCOMP
303(1)
8.2.2 Rotational MOCOMP
304(2)
8.3 Popular MOCOMP Techniques in ISAR
306(22)
8.3.1 Cross-Correlation Method
306(5)
8.3.2 Minimum Entropy Method
311(5)
8.3.3 JTF-Based MOCOMP
316(5)
8.3.4 Algorithm for JTF-Based Translational and Rotational MOCOMP
321(7)
8.4 Matlab Codes
328(14)
References
342(3)
9 Some Imaging Applications Based on Inverse Synthetic Aperture Radar
345(30)
9.1 Imaging Antenna-Platform Scattering: ASAR
346(7)
9.1.1 The ASAR Imaging Algorithm
347(5)
9.1.2 Numerical Example for ASAR Imagery
352(1)
9.2 Imaging Platform Coupling between Antennas: ACSAR
353(6)
9.2.1 The ACSAR Imaging Algorithm
356(2)
9.2.2 Numerical Example for ACSAR
358(1)
9.3 Imaging Scattering from Subsurface Objects: GPR-SAR
359(13)
9.3.1 The GPR Problem
362(2)
9.3.2 Focused GPR Images Using SAR
364(5)
9.3.3 Applying ACSAR Concept to the GPR Problem
369(3)
References
372(3)
Appendix 375(4)
Index 379
Caner Özdemir, PhD, is Professor of the Department of Electrical-Electronics Engineering at Mersin University and Dean of Faculty of Engineering at Zirve University. Professor Özdemir has performed extensive research in synthetic aperture radar imaging and has developed many novel methods used in inverse synthetic aperture radar imaging.