Muutke küpsiste eelistusi

Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms 2nd edition [Kõva köide]

Teised raamatud teemal:
Teised raamatud teemal:

Build your knowledge of SAR/ISAR imaging with this comprehensive and insightful resource  

The newly revised Second Edition of Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms covers in greater detail the fundamental and advanced topics necessary for a complete understanding of inverse synthetic aperture radar (ISAR) imaging and its concepts. Distinguished author and academician, Caner Özdemir, describes the practical aspects of ISAR imaging and presents illustrative examples of the radar signal processing algorithms used for ISAR imaging. The topics in each chapter are supplemented with MATLAB codes to assist readers in better understanding each of the principles discussed within the book.  

This new edition incudes discussions of the most up-to-date topics to arise in the field of ISAR imaging and ISAR hardware design. The book provides a comprehensive analysis of  advanced techniques like Fourier-based  radar imaging algorithms, and motion compensation techniques along with radar fundamentals for readers new to the subject. 

The author covers a wide variety of topics, including: 

  • Radar fundamentals, including concepts like radar cross section, maximum detectable range, frequency modulated continuous wave, and doppler frequency and pulsed radar 
  • The theoretical and practical aspects of signal processing algorithms used in ISAR imaging 
  • The numeric implementation of all necessary algorithms in MATLAB 
  • ISAR hardware, emerging topics on SAR/ISAR focusing algorithms such as bistatic ISAR imaging, polarimetric ISAR imaging, and near-field ISAR imaging,  
  • Applications of SAR/ISAR imaging techniques to other radar imaging problems such as thru-the-wall radar imaging and ground-penetrating radar imaging  

Perfect for graduate students in the fields of electrical and electronics engineering, electromagnetism, imaging radar, and physics, Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms also belongs on the bookshelves of practicing researchers in the related areas looking for a useful resource to assist them in their day-to-day professional work. 

Preface to the Second Edition xvi
Acknowledgments xix
Acronyms xx
1 Basics Of Fourier Analysis
1(34)
1.1 Forward and Inverse Fourier Transform
1(2)
1.1.1 Brief History of FT
1(1)
1.1.2 Forward FT Operation
2(1)
1.1.3 IFT
3(1)
1.2 FT Rules and Pairs
3(2)
1.2.1 Linearity
3(1)
1.2.2 Time Shifting
3(1)
1.2.3 Frequency Shifting
4(1)
1.2.4 Scaling
4(1)
1.2.5 Duality
4(1)
1.2.6 Time Reversal
4(1)
1.2.7 Conjugation
4(1)
1.2.8 Multiplication
4(1)
1.2.9 Convolution
5(1)
1.2.10 Modulation
5(1)
1.2.11 Derivation and Integration
5(1)
1.2.12 Parseval's Relationship
5(1)
1.3 Time-Frequency Representation of a Signal
5(6)
1.3.1 Signal in the Time Domain
6(1)
1.3.2 Signal in the Frequency Domain
6(1)
1.3.3 Signal in the Joint Time-Frequency (JTF) Plane
7(4)
1.4 Convolution and Multiplication Using FT
11(1)
1.5 Filtering/Windowing
12(2)
1.6 Data Sampling
14(2)
1.7 DFT and FFT
16(3)
1.7.1 DFT
16(1)
1.7.2 FFT
17(1)
1.7.3 Bandwidth and Resolutions
17(2)
1.8 Aliasing
19(1)
1.9 Importance of FT in Radar Imaging
19(4)
1.10 Effect of Aliasing in Radar Imaging
23(3)
1.11 Matlab Codes
26(7)
References
33(2)
2 Radar Fundamentals
35(50)
2.1 Electromagnetic Scattering
35(3)
2.2 Scattering from PECs
38(1)
2.3 Radar Cross Section
39(5)
2.3.1 Definition of RCS
40(3)
2.3.2 RCS of Simple-Shaped Objects
43(1)
2.3.3 RCS of Complex-Shaped Objects
44(1)
2.4 Radar Range Equation
44(6)
2.4.1 Bistatic Case
46(3)
2.4.2 Monostatic Case
49(1)
2.5 Range of Radar Detection
50(3)
2.5.1 Signal-to-Noise Ratio
51(2)
2.6 Radar Waveforms
53(16)
2.6.1 Continuous Wave
53(3)
2.6.2 Frequency-Modulated Continuous Wave
56(3)
2.6.3 Stepped-Frequency Continuous Wave
59(2)
2.6.4 Short Pulse
61(1)
2.6.5 Chirp (LFM) Pulse
62(7)
2.7 Pulsed Radar
69(5)
2.7.1 Pulse Repetition Frequency
69(1)
2.7.2 Maximum Range and Range Ambiguity
69(1)
2.7.3 Doppler Frequency
70(4)
2.8 Matlab Codes
74(8)
References
82(3)
3 Synthetic Aperture Radar
85(77)
3.1 SAR Modes
86(1)
3.2 SAR System Design
87(1)
3.3 Resolutions in SAR
88(3)
3.4 SAR Image Formation
91(1)
3.5 Range Compression
92(18)
3.5.1 Matched Filter
92(3)
3.5.1.1 Computing Matched Filter Output via Fourier Processing
95(1)
3.5.1.2 Example for Matched Filtering
96(3)
3.5.2 Ambiguity Function
99(1)
3.5.2.1 Relation to Matched Filter
100(1)
3.5.2.2 Ideal Ambiguity Function
101(1)
3.5.2.3 Rectangular-Pulse Ambiguity Function
102(1)
3.5.2.4 LFM-Pulse Ambiguity Function
102(3)
3.5.3 Pulse Compression
105(1)
3.5.3.1 Detailed Processing of Pulse Compression
105(4)
3.5.3.2 Bandwidth, Resolution, and Compression Issues for LFM Signal
109(1)
3.5.3.3 Pulse Compression Example
110(1)
3.6 Azimuth Compression
110(8)
3.6.1 Processing in Azimuth
110(6)
3.6.2 Azimuth Resolution
116(1)
3.6.3 Relation to ISAR
117(1)
3.7 SAR Imaging
118(1)
3.8 SAR Focusing Algorithms
118(17)
3.8.1 RDA
119(1)
3.8.1.1 Range Compression in RDA
120(6)
3.8.1.2 Azimuth Fourier Transform
126(2)
3.8.1.3 Range Cell Migration Correction
128(1)
3.8.1.4 Azimuth Compression
129(1)
3.8.1.5 Simulated SAR Imaging Example
130(3)
3.8.1.6 Drawbacks of RDA
133(1)
3.8.2 Chirp Scaling Algorithm
133(1)
3.8.3 The ω-kA
133(1)
3.8.4 Back-Projection Algorithm
134(1)
3.9 Example of a Real SAR Imagery
135(1)
3.10 Problems in SAR Imaging
136(4)
3.10.1 Range Migration and Range Walk
136(1)
3.10.2 Motion Errors
137(3)
3.10.3 Speckle Noise
140(1)
3.11 Advanced Topics in SAR
140(3)
3.11.1 SAR Interferometry
140(2)
3.11.2 SAR Polarimetry
142(1)
3.12 Matlab Codes
143(15)
References
158(4)
4 Inverse Synthetic Aperture Radar Imaging And Its Basic Concepts
162(84)
4.1 SAR versus ISAR
162(4)
4.2 The Relation of Scattered Field to the Image Function in ISAR
166(1)
4.3 One-Dimensional (1D) Range Profile
167(5)
4.4 ID Cross-Range Profile
172(4)
4.5 Two-Dimensional (2D) ISAR Image Formation (Small Bandwidth, Small Angle)
176(21)
4.5.1 Resolutions in ISAR
180(1)
4.5.1.1 Range Resolution
181(1)
4.5.1.2 Cross-Range Resolution
181(1)
4.5.2 Range and Cross-Range Extends
181(1)
4.5.3 Imaging Multibounces in ISAR
182(3)
4.5.4 Sample Design Procedure for ISAR
185(4)
4.5.4.1 ISAR Design Example #1: "Aircraft Target"
189(4)
4.5.4.2 ISAR Design Example #2: "Military Tank Target"
193(4)
4.6 2D ISAR Image Formation (Wide Bandwidth, Large Angles)
197(8)
4.6.1 Direct Integration
198(3)
4.6.2 Polar Reformatting
201(4)
4.7 3D ISAR Image Formation
205(12)
4.7.1 Range and Cross-Range resolutions
209(1)
4.7.2 A Design Example for 3D ISAR
210(7)
4.8 Matlab Codes
217(26)
References
243(3)
5 Imaging Issues In Inverse Synthetic Aperture Radar
246(60)
5.1 Fourier-Related Issues
246(6)
5.1.1 DFT Revisited
246(4)
5.1.2 Positive and Negative Frequencies in DFT
250(2)
5.2 Image Aliasing
252(3)
5.3 Polar Reformatting Revisited
255(5)
5.3.1 Nearest Neighbor Interpolation
255(3)
5.3.2 Bilinear Interpolation
258(2)
5.4 Zero Padding
260(4)
5.5 Point Spread Function
264(5)
5.6 Windowing
269(11)
5.6.1 Common Windowing Functions
269(1)
5.6.1.1 Rectangular Window
269(1)
5.6.1.2 Triangular Window
269(3)
5.6.1.3 Hanning Window
272(1)
5.6.1.4 Hamming Window
272(1)
5.6.1.5 Kaiser Window
272(4)
5.6.1.6 Blackman Window
276(1)
5.6.1.7 Chebyshev Window
277(1)
5.6.2 ISAR Image Smoothing via Windowing
277(3)
5.7 Matlab Codes
280(24)
References
304(2)
6 Range-Doppler Inverse Synthetic Aperture Radar Processing
306(43)
6.1 Scenarios for ISAR
306(6)
6.1.1 Imaging Aerial Targets via Ground-Based Radar
307(2)
6.1.2 Imaging Ground/Sea Targets via Aerial Radar
309(3)
6.2 ISAR Waveforms for Range-Doppler Processing
312(4)
6.2.1 Chirp Pulse Train
312(2)
6.2.2 Stepped Frequency Pulse Train
314(2)
6.3 Doppler Shift's Relation to Cross-Range
316(3)
6.3.1 Doppler Frequency Shift Resolution
317(1)
6.3.2 Resolving Doppler Shift and Cross-Range
318(1)
6.4 Forming the Range-Doppler Image
319(1)
6.5 ISAR Receiver
320(3)
6.5.1 ISAR Receiver for Chirp Pulse Radar
320(1)
6.5.2 ISAR Receiver for SFCW Radar
321(2)
6.6 Quadrature Detection
323(3)
6.6.1 I-Channel Processing
324(1)
6.6.2 Q-Channel Processing
324(2)
6.7 Range Alignment
326(1)
6.8 Defining the Range-Doppler ISAR Imaging Parameters
327(4)
6.8.1 Image Frame Dimension (Image Extends)
327(1)
6.8.2 Range and Cross-Range Resolution
328(1)
6.8.3 Frequency Bandwidth and the Center Frequency
328(1)
6.8.4 Doppler Frequency Bandwidth
328(1)
6.8.5 Pulse Repetition Frequency
329(1)
6.8.6 Coherent Integration (Dwell) Time
329(1)
6.8.7 Pulse Width
330(1)
6.9 Example of Chirp Pulse-Based Range-Doppler ISAR Imaging
331(5)
6.10 Example of SFCW-Based Range-Doppler ISAR Imaging
336(3)
6.11 Matlab Codes
339(8)
References
347(2)
7 Scattering Center Representation Of Inverse Synthetic Aperture Radar
349(36)
7.1 Scattering/Radiation Center Model
350(2)
7.2 Extraction of Scattering Centers
352(16)
7.2.1 Image Domain Formulation
352(1)
7.2.1.1 Extraction in the Image Domain: The "CLEAN" Algorithm
352(3)
7.2.1.2 Reconstruction in the Image Domain
355(7)
7.2.2 Fourier Domain Formulation
362(1)
7.2.2.1 Extraction in the Fourier Domain
362(2)
7.2.2.2 Reconstruction in the Fourier Domain
364(4)
7.3 Matlab Codes
368(14)
References
382(3)
8 Motion Compensation For Inverse Synthetic Aperture Radar
385(55)
8.1 Doppler Effect Due to Target Motion
386(2)
8.2 Standard MOCOMP Procedures
388(4)
8.2.1 Translational MOCOMP
389(1)
8.2.1.1 Range Tracking
389(1)
8.2.1.2 Doppler Tracking
390(1)
8.2.2 Rotational MOCOMP
390(2)
8.3 Popular ISAR MOCOMP Techniques
392(23)
8.3.1 Cross-Correlation Method
392(2)
8.3.1.1 Example for the Cross-Correlation Method
394(4)
8.3.2 Minimum Entropy Method
398(1)
8.3.2.1 Definition of Entropy in ISAR Images
398(1)
8.3.2.2 Example for the Minimum Entropy Method
399(3)
8.3.3 JTF-Based MOCOMP
402(1)
8.3.3.1 Received Signal from a Moving Target
403(1)
8.3.3.2 An Algorithm for JTF-Based Rotational MOCOMP
404(2)
8.3.3.3 Example for JTF-Based Rotational MOCOMP
406(2)
8.3.4 Algorithm for JTF-Based Translational and Rotational MOCOMP
408(2)
8.3.4.1 A Numerical Example
410(5)
8.4 Matlab Codes
415(21)
References
436(4)
9 Bistatic Isar Imaging
440(44)
9.1 Why Bi-ISAR Imaging?
440(4)
9.2 Geometry for Bi-Isar Imaging and the Algorithm
444(5)
9.2.1 Bi-ISAR Imaging Algorithm for a Point Scatterer
444(4)
9.2.2 Bistatic ISAR Imaging Algorithm for a Target
448(1)
9.3 Resolutions in Bistatic ISAR
449(3)
9.3.1 Range Resolution
449(1)
9.3.2 Cross-Range Resolution
450(1)
9.3.3 Range and Cross-Range Extends
451(1)
9.4 Design Procedure for Bi-ISAR Imaging
452(3)
9.5 Bi-Isar Imaging Examples
455(10)
9.5.1 Bi-ISAR Design Example #1
455(2)
9.5.2 Bi-ISAR Design Example #2
457(8)
9.6 Mu-ISAR Imaging
465(7)
9.6.1 Challenges in Mu-ISAR Imaging
467(1)
9.6.2 Mu-ISAR Imaging Example
468(4)
9.7 Matlab Codes
472(11)
References
483(1)
10 Polarimetric Isar Imaging
484(49)
10.1 Polarization of an Electromagnetic Wave
484(4)
10.1.1 Polarization Type
485(1)
10.1.2 Polarization Sensitivity
486(1)
10.1.3 Polarization in Radar Systems
487(1)
10.2 Polarization Scattering Matrix
488(9)
10.2.1 Relation to RCS
490(1)
10.2.2 Polarization Characteristics of the Scattered Wave
491(2)
10.2.3 Polarimetric Decompositions of EM Wave Scattering
493(1)
10.2.4 The Pauli Decomposition
494(1)
10.2.4.1 Description of Pauli Decomposition
494(1)
10.2.4.2 Interpretation of Pauli Decomposition
495(1)
10.2.4.3 Polarimetric Image Representation Using Pauli Decomposition
496(1)
10.3 Why Polarimetric ISAR Imaging?
497(1)
10.4 ISAR Imaging with Full Polarization
497(2)
10.4.1 ISAR Data in LP Basis
497(1)
10.4.2 ISAR Data in CP Basis
498(1)
10.5 Polarimetric ISAR Images
499(16)
10.5.1 Pol-ISAR Image of a Benchmark Target
499(1)
10.5.1.1 The "SLICY" Target
499(1)
10.5.1.2 Fully Polarimetric EM Simulation of SLICY
499(1)
10.5.1.3 LP Pol-ISAR Images of SLICY
500(2)
10.5.1.4 CP Pol-ISAR Images of SLICY
502(1)
10.5.1.5 Pauli Decomposition Image of SLICY
503(4)
10.5.2 Pol-ISAR Image of a Complex Target
507(1)
10.5.2.1 The "Military Tank" Target
507(1)
10.5.2.2 Fully Polarimetric EM Simulation of "Tank" Target
508(1)
10.5.2.3 LP Pol-ISAR Images of "Tank" Target
508(2)
10.5.2.4 CP Pol-ISAR Images of "Tank" Target
510(2)
10.5.2.5 Pauli Decomposition Image of "Tank" Target
512(3)
10.6 Feature Extraction from Polarimetric Images
515(1)
10.7 Matlab Codes
515(14)
References
529(4)
11 Near-Field Isar Imaging
533(38)
11.1 Definitions of Far and Near-Field Regions
534(3)
11.1.1 The Far-Field Region
534(1)
11.1.1.1 The Far-Field Definition Based on Target's Cross-Range Extend
534(1)
11.1.1.2 The Far-Field Definition Based on Target's Range Extend
535(2)
11.1.2 The Near-Field Region
537(1)
11.2 Near-Field Signal Model for the Back-Scattered Field
537(3)
11.3 Near-Field ISAR Imaging Algorithms
540(6)
11.3.1 "Focusing Operator" Algorithm
540(1)
11.3.2 Back-Projection Algorithm
541(1)
11.3.2.1 Fourier Slice Theorem
542(1)
11.3.2.2 BPA Formulation (3D Case)
543(1)
11.3.2.3 BPA Formulation (2D Case)
544(2)
11.4 Data Sampling Criteria and the Resolutions
546(1)
11.5 Near-Field ISAR Imaging Examples
547(13)
11.5.1 Point Scatterers in the Near-Field: Comparison of Far- and Near-Field Imaging Algorithms
547(5)
11.5.2 Near-Field ISAR Imaging of a Large Object
552(3)
11.5.3 Near-Field ISAR Imaging of a Small Object
555(5)
11.6 Matlab Codes
560(9)
References
569(2)
12 Some Imaging Applications Based On Sar/Isar
571(48)
12.1 Imaging Subsurface Objects: GPR-SAR
572(18)
12.1.1 The GPR Problem
572(5)
12.1.2 B-Scan GPR in Comparison to Strip-Map SAR
577(1)
12.1.3 Focused GPR Images Using SAR
577(2)
12.1.3.1 GPR Focusing with ω-k Algorithm (ω-kA)
579(3)
12.1.3.2 GPR Focusing with BPA
582(7)
12.1.3.3 Other Popular GPR Focusing Techniques
589(1)
12.2 Thru-the-Wall Imaging Radar Using SAR
590(6)
12.2.1 Challenges in TWIR
591(1)
12.2.2 Techniques to Improve Cross-Range Resolution in TWIR
591(1)
12.2.3 The Use of SAR in TWIR
592(2)
12.2.4 Example of SAR-Based TWIR
594(2)
12.3 Imaging Antenna-Platform Scattering: ASAR
596(9)
12.3.1 The ASAR Imaging Algorithm
597(6)
12.3.2 Numerical Example for ASAR Imagery
603(2)
12.4 Imaging Platform Coupling Between Antennas: ACSAR
605(10)
12.4.1 The ACSAR Imaging Algorithm
606(3)
12.4.2 Numerical Example for ACSAR
609(2)
12.4.3 Applying ACSAR Concept to the GPR Problem
611(4)
References
615(4)
Appendix 619(9)
Index 628
CANER ÖZDEMIR, PHD, teaches undergraduate and graduate courses on electromagnetics, antennas, radar, and signal processing at Mersin University in Turkey. He has published over 150 scientific journal articles and is the recipient of the URSI EMT-S Young Scientist Award in the 2004 International Symposium on Electromagnetic Theory, as well as the 2016 Best Paper Award in SPIE-Journal of Applied Remote Sensing.