Preface |
|
xi | |
Chapter 1 Basic Principles |
|
1 | (50) |
|
1.1 Mathematical induction |
|
|
1 | (1) |
|
|
2 | (3) |
|
1.3 Completeness principles |
|
|
5 | (7) |
|
|
12 | (6) |
|
|
18 | (4) |
|
1.6 Continuous functions and derivatives |
|
|
22 | (5) |
|
|
27 | (6) |
|
|
33 | (6) |
|
|
39 | (2) |
|
|
41 | (1) |
|
|
42 | (4) |
|
|
46 | (5) |
Chapter 2 Special Sequences |
|
51 | (22) |
|
|
51 | (4) |
|
|
55 | (1) |
|
|
56 | (4) |
|
2.4 Vieta's product formula |
|
|
60 | (1) |
|
2.5 Wallis product formula |
|
|
61 | (2) |
|
|
63 | (3) |
|
|
66 | (7) |
Chapter 3 Power Series and Related Topics |
|
73 | (36) |
|
3.1 General properties of power series |
|
|
73 | (3) |
|
|
76 | (5) |
|
3.3 Cauchy products and Mertens' theorem |
|
|
81 | (2) |
|
3.4 Taylor's formula with remainder |
|
|
83 | (4) |
|
3.5 Newton's binomial series |
|
|
87 | (2) |
|
3.6 Composition of power series |
|
|
89 | (3) |
|
|
92 | (6) |
|
3.8 Continuous nowhere differentiable functions |
|
|
98 | (4) |
|
|
102 | (7) |
Chapter 4 Inequalities |
|
109 | (22) |
|
4.1 Elementary inequalities |
|
|
109 | (3) |
|
|
112 | (5) |
|
4.3 Arithmetic-geometric mean inequality |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
119 | (3) |
|
|
122 | (5) |
|
|
127 | (4) |
Chapter 5 Infinite Products |
|
131 | (14) |
|
|
131 | (4) |
|
|
135 | (1) |
|
|
136 | (2) |
|
|
138 | (3) |
|
|
141 | (4) |
Chapter 6 Approximation by Polynomials |
|
145 | (34) |
|
|
145 | (6) |
|
6.2 Weierstrass approximation theorem |
|
|
151 | (2) |
|
|
153 | (4) |
|
6.4 Bernstein polynomials |
|
|
157 | (3) |
|
|
160 | (4) |
|
6.6 Stone-Weierstrass theorem |
|
|
164 | (4) |
|
6.7 Refinements of Weierstrass theorem |
|
|
168 | (3) |
|
|
171 | (8) |
Chapter 7 Tauberian Theorems |
|
179 | (18) |
|
7.1 Summation of divergent series |
|
|
179 | (3) |
|
|
182 | (1) |
|
7.3 Theorems of Hardy and Littlewood |
|
|
183 | (2) |
|
|
185 | (5) |
|
|
190 | (3) |
|
|
193 | (4) |
Chapter 8 Fourier Series |
|
197 | (50) |
|
|
197 | (2) |
|
8.2 Orthogonality relations |
|
|
199 | (1) |
|
8.3 Mean-square approximation |
|
|
200 | (3) |
|
8.4 Convergence of Fourier series |
|
|
203 | (4) |
|
|
207 | (5) |
|
|
212 | (3) |
|
8.7 Arithmetic means of partial sums |
|
|
215 | (4) |
|
8.8 Continuous functions with divergent Fourier series |
|
|
219 | (2) |
|
|
221 | (7) |
|
8.10 Inversion of Fourier transforms |
|
|
228 | (4) |
|
8.11 Poisson summation formula |
|
|
232 | (4) |
|
|
236 | (11) |
Chapter 9 The Gamma Function |
|
247 | (22) |
|
|
247 | (2) |
|
|
249 | (2) |
|
|
251 | (1) |
|
9.4 Legendre's duplication formula |
|
|
252 | (1) |
|
9.5 Euler's reflection formula |
|
|
253 | (2) |
|
9.6 Infinite product representation |
|
|
255 | (2) |
|
9.7 Generalization of Stirling's formula |
|
|
257 | (1) |
|
9.8 Bohr-Mollerup theorem |
|
|
257 | (4) |
|
|
261 | (1) |
|
|
262 | (7) |
Chapter 10 Two Topics in Number Theory |
|
269 | (22) |
|
10.1 Equidistributed sequences |
|
|
269 | (2) |
|
|
271 | (5) |
|
10.3 The Riemann zeta function |
|
|
276 | (4) |
|
10.4 Connection with the gamma function |
|
|
280 | (2) |
|
|
282 | (4) |
|
|
286 | (5) |
Chapter 11 Bernoulli Numbers |
|
291 | (18) |
|
11.1 Calculation of Bernoulli numbers |
|
|
291 | (3) |
|
11.2 Sums of positive powers |
|
|
294 | (1) |
|
|
295 | (2) |
|
11.4 Bernoulli polynomials |
|
|
297 | (3) |
|
11.5 Euler-Maclaurin summation formula |
|
|
300 | (2) |
|
11.6 Applications of Euler-Maclaurin formula |
|
|
302 | (3) |
|
|
305 | (4) |
Chapter 12 The Cantor Set |
|
309 | (18) |
|
|
309 | (4) |
|
|
313 | (2) |
|
|
315 | (2) |
|
12.4 The Cantor-Scheeffer function |
|
|
317 | (3) |
|
12.5 Space-filling curves |
|
|
320 | (3) |
|
|
323 | (4) |
Chapter 13 Differential Equations |
|
327 | (42) |
|
13.1 Existence and uniqueness of solutions |
|
|
327 | (6) |
|
|
333 | (3) |
|
13.3 Power series solutions |
|
|
336 | (7) |
|
|
343 | (5) |
|
13.5 Hypergeometric functions |
|
|
348 | (6) |
|
13.6 Oscillation and comparison theorems |
|
|
354 | (4) |
|
13.7 Refinements of Sturm's theory |
|
|
358 | (2) |
|
|
360 | (9) |
Chapter 14 Elliptic Integrals |
|
369 | (18) |
|
|
369 | (2) |
|
14.2 Fagnano's duplication formula |
|
|
371 | (2) |
|
14.3 The arithmetic-geometric mean |
|
|
373 | (8) |
|
14.4 The Legendre relation |
|
|
381 | (3) |
|
|
384 | (3) |
Index of Names |
|
387 | (2) |
Subject Index |
|
389 | |