Muutke küpsiste eelistusi

Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles, Volume 2 [Kõva köide]

Edited by (University of Maine, USA)
  • Formaat: Hardback, 993 pages, kõrgus x laius: 234x156 mm, kaal: 835 g, No
  • Sari: Smart Materials Series Volume 18
  • Ilmumisaeg: 19-Nov-2015
  • Kirjastus: Royal Society of Chemistry
  • ISBN-10: 1782627219
  • ISBN-13: 9781782627210
  • Kõva köide
  • Hind: 251,65 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 993 pages, kõrgus x laius: 234x156 mm, kaal: 835 g, No
  • Sari: Smart Materials Series Volume 18
  • Ilmumisaeg: 19-Nov-2015
  • Kirjastus: Royal Society of Chemistry
  • ISBN-10: 1782627219
  • ISBN-13: 9781782627210
A comprehensive resource on ionic polymer metal composites (IPMCs) edited by the leading authority on the subject.

Ionic polymer metal composites (IPMCs) can generate a voltage when physically deformed. Conversely, an applied small voltage or electrical field can induce an array of spectacular large deformation or actuation behaviours in IPMCs, such as bending, twisting, rolling, twirling, steering and undulating. An important smart material, IPMCs have applications in energy harvesting and as self-powered strain or deformation sensors, they are especially suitable for monitoring the shape of dynamic structures. Other uses include soft actuation applications and as a material for biomimetic robotic soft artificial muscles in industrial and medical contexts. This comprehensive volume on ionic polymer metal composites provides a broad coverage of the state of the art and recent advances in the field written by some of the world’s leading experts on various characterizations and modeling of IPMCs. Topics covered in this two volume set include uses in electrochemically active electrodes, electric energy storage devices, soft biomimetic robotics artificial muscles, multiphysics modeling of IPMCs, biomedical applications, IPMCs as dexterous manipulators and tactile sensors for minimally invasive robotic surgery, self-sensing, miniature pumps for drug delivery, IPMC snake-like robots, IPMC microgrippers for microorganisms manipulations, Graphene-based IPMCs and cellulose-based IPMCs or electroactive paper actuators (EAPap). Edited by the leading authority on IMPCs, the broad coverage will appeal to researchers from chemistry, materials, engineering, physics and medical communities interested in both the material and its applications.
Chapter 14 Energy Exchange between Coherent Fluid Structures and Ionic Polymer Metal Composites, toward Flow Sensing and Energy Harvesting 1(18)
Sean D. Peterson
Maurizio Porfiri
14.1 Introduction
1(2)
14.2 Experiments
3(4)
14.2.1 Impulsive Loading of a Cantilever Strip
3(1)
14.2.2 Impulsive Loading of an Annulus
4(3)
14.3 Insights from Modeling and Simulation
7(8)
14.3.1 Potential Flow Modeling
7(5)
14.3.2 CFD
12(3)
14.4 Summary and Conclusions
15(1)
Acknowledgements
16(1)
References
16(3)
Chapter 15 Miniature Pump with Ionic Polymer Metal Composite Actuator for Drug Delivery 19(27)
Jiaqi Wang
Andrew McDaid
Rajnish Sharma
Wei Yu
Kean C. Aw
15.1 Introduction
19(1)
15.2 IPMC Fundamentals
20(1)
15.3 Advantages of IPMCs and Current Applications
20(1)
15.4 IPMC Control Techniques
21(12)
15.4.1 Development of Miniature Pump Technology
22(3)
15.4.2 Overview and Discussion of Miniature Pump Actuation Mechanisms
25(1)
15.4.3 Advantages of IPMCs for Drug Delivery Miniature Pumps
26(1)
15.4.4 Design and Fabrication of Miniature Pumps
27(1)
15.4.5 Valveless Miniature Pumps
28(1)
15.4.6 Miniature Pump Design
28(1)
15.4.7 Simulation of the Pump
29(4)
15.5 Control of IPMC Actuators
33(9)
15.5.1 IFT Algorithm
34(2)
15.5.2 Online IFT Tuning
36(1)
15.5.3 Experimental Results
37(2)
15.5.4 Performance Optimization of Valveless Pumps
39(3)
15.6 Conclusion
42(1)
References
42(4)
Chapter 16 Modelling and Characterisation of Ionic Polymer Metal Composite (IPMC) Transducers: From IPMC Infancy to Multiphysics Modelling 46(112)
Salvatore Graziani
16.1 Introduction
46(5)
16.2 Modelling
51(101)
16.2.1 Black-box Modelling
52(28)
16.2.2 Grey-box Modelling
80(54)
16.2.3 White-box Modelling
134(18)
References
152(6)
Chapter 17 Ionic Polymer Metal Composites as Post-silicon Transducers for the Realisation of Smart Systems 158(57)
Salvatore Graziani
17.1 Introduction
158(2)
17.2 IPMC-based Actuators
160(19)
17.3 IPMC-based Sensors
179(19)
17.4 Smart IPMC-based Devices
198(11)
References
209(6)
Chapter 18 Micromachined Ionic Polymer Metal Composite Actuators for Biomedical Applications 215(25)
Guo-Hua Feng
18.1 Fabrication of Micromachined IPMC Actuators
216(8)
18.1.1 Fabrication by Surface Micromachining
216(3)
18.1.2 Fabrication by Bulk Micromachining
219(2)
18.1.3 Fabrication by Micromolding
221(3)
18.2 Analysis and Characterization of Micromachined IPMC Actuators
224(6)
18.2.1 Investigation of the Dynamic Behavior of Micromachined IPMC Actuators with Molecular-scale Models
224(3)
18.2.2 Electrical Circuit Model used to Characterize the Micromachined IPMC Actuator
227(3)
18.3 Micromachined IPMC Actuators for Biomedical Applications
230(8)
18.3.1 Microgrippers for Endoscopic Surgery
230(3)
18.3.2 Optical Fiber Enclosed by Four-electrode IPMC Actuators for Directing Laser Beams
233(2)
18.3.3 Helical IPMC Actuators with Rotational and Longitudinal Motions for Active Stents
235(3)
18.4 Conclusion
238(1)
References
238(2)
Chapter 19 Ionic Polymer Metal Composites: Recent Advances in Self-sensing Methods 240(17)
Masoud Amirkhani
Parisa Bakhtiarpour
19.1 Introduction
240(1)
19.2 MET Sensor
241(2)
19.3 SR Sensor
243(3)
19.4 HFR Sensor
246(9)
19.4.1 Experiment
249(2)
19.4.2 Results and Discussion
251(4)
19.5 Conclusion
255(1)
References
256(1)
Chapter 20 A Continuum Multiphysics Theory for Electroactive Polymers and Ionic Polymer Metal Composites 257(28)
John G. Michopoulos
Mohsen Shahinpoor
Athanasios Iliopoulos
20.1 Introduction
257(2)
20.2 Overview of the Multifield and Constitutive Theory Framework
259(5)
20.2.1 The Abstract Derivation Process
259(4)
20.2.2 Multiplicity of Thermodynamics
263(1)
20.3 Conservation Laws of Electrodynamics
264(4)
20.3.1 Classic and Potential Formulations
264(3)
20.3.2 Electric Conductivity through Charge Relaxation
267(1)
20.4 Transport of Multicomponent Mass, Heat and Electric Current in Deformable Continua
268(5)
20.4.1 Mass, Charge and Current Density Conservation
268(1)
20.4.2 Momentum Conservation
269(1)
20.4.3 Energy Conservation
270(1)
20.4.4 Entropy Conservation and the Second Law
271(2)
20.5 Development of Constitutive Theory
273(3)
20.6 General Field Evolution Equations
276(1)
20.7 Specific Field Evolution Equations
277(2)
20.8 Application to a Bi-component Electrohygrothermoelastic Medium
279(3)
20.9 Conclusions
282(1)
Acknowledgements
283(1)
References
283(2)
Chapter 21 Multiphysics Modeling of Nonlinear Ionic Polymer Metal Composite Plates 285(26)
John G. Michopoulos
Moshen Shahinpoor
Athanasios Iliopoulos
21.1 Introduction
285(1)
21.2 Derivation of the Generalized von Karman Equations
286(6)
21.3 Special Cases
292(3)
21.4 Numerical Solution of a Special Case
295(5)
21.5 Data-driven Construction of Analytical Solutions
300(8)
21.5.1 Experimental Procedure for Data Collection
300(5)
21.5.2 Design Optimization for the Analytical Approximation of Simulated Behavior
305(3)
21.6 Conclusions
308(1)
Acknowledgements
309(1)
References
309(2)
Chapter 22 Ionic Polymer Metal Composites as Dexterous Manipulators and Haptic Feedback/Tactile Sensors for Minimally Invasive Robotic Surgery 311(30)
Mohsen Shahinpoor
22.1 Introduction
311(1)
22.2 Introduction to Smart Materials and Artificial Muscles
312(1)
22.3 Haptic/Tactile Feedback Technology Overview
313(2)
22.4 IPMC Manufacturing and Biocompatibility
315(5)
22.4.1 IPMC Biomimetic Robotic Actuation
316(1)
22.4.2 IPMC Versatile Sensing Feedback
317(1)
22.4.3 IPMC-Based Haptic/Tactile Feedback Sensing Technology
318(2)
22.5 Applications of IPMCs for Robotic Surgery
320(2)
22.5.1 Brief Introduction to IPMCs as Multifunctional Materials
320(2)
22.6 Feasibility of Providing Kinesthetic Force Feedback to Surgeons during Robotic Surgery by EAP Sensors (IPMCs)
322(4)
22.7 Integration of IPMCs with Robotic End-effectors for Kinesthetic Force Feedback to Surgeons during Robotic Surgery by EAP Sensors (IPMCs)
326(8)
22.8 IPMC-Based Haptic/Tactile Feedback Technology
334(1)
22.9 Configuration of IPMC Haptic Feedback/Tactile Loop Sensing Elements with Robotic Surgical End-effectors
335(1)
Acknowledgements
335(1)
References
335(6)
Chapter 23 Ionic Polymer Metal Composites as Soft Biomimetic Robotic Artificial Muscles 341(23)
Mohsen Shahinpoor
23.1 Introduction
341(1)
23.2 IPMC Manufacturing and Biocompatibility for Biomimetic Robotic Applications
342(1)
23.3 IPMC Actuation as Biomimetic Robotic Artificial Muscles
343(1)
23.4 Some Electrical Properties of IPMCs as Biomimetic Robotic Artificial Muscles
344(1)
23.5 IPMCs as Versatile Sensors for Biomimetic Robotic Sensing
345(1)
23.6 Underlying Fundamentals of Biomimetic Robotic Actuation and Sensing in IPMCs
346(6)
23.7 Modeling of Biomimetic Robotic Actuation and Sensing in IPMCs
352(2)
23.8 Some Experimental Results
354(3)
23.9 Multicomponent Theories of Biomimetic Robotic Actuation and Sensing in IPMCs
357(2)
23.10 Conclusions
359(1)
Acknowledgements
360(1)
References
360(4)
Chapter 24 Ionic Electroactive Actuators with Giant Electromechanical Responses 364(21)
Yue Zhou
Mehdi Ghaffari
Chad Welsh
Q.M. Zhang
24.1 Aligned Nanoporous Microwave-exfoliated Graphite Oxide Actuators with Ultra-high Strain and Elastic Energy Density Induced under a Few Volts
364(9)
24.1.1 Background
364(3)
24.1.2 Experimental Preparation and Characterization
367(1)
24.1.3 Electro-actuation Strain, Specific Capacitance, and Elastic Energy Density
368(5)
24.2 Improving the Elastic Energy Density and Electrochemical Conversion Efficiency by Tailoring P(VDF-CTFE) Concentration
373(4)
24.2.1 Polymer Content Adjustment and Characterization
373(1)
24.2.2 Strain, Elastic Energy Density, and Efficiency Performance
374(3)
24.3 Improving Mobile Ion Transport in the A-aMEGO Actuator Electrodes
377(6)
24.3.1 Background
377(3)
24.3.2 Experimental Modification
380(1)
24.3.3 Improved Strain Results due to Ion Channels
381(2)
References
383(2)
Chapter 25 Multiphysics Modeling and Simulation of Dynamics Sensing in Ionic Polymer Metal Composites with Applications to Soft Robotics 385(13)
Yousef Bahramzadeh
25.1 Ionomers and Electrodes in Ionic Polymer Metal Composites
385(3)
25.2 IPMC Curvature Sensor
388(1)
25.3 IPMC Curvature Actuators as Soft Robots for Biomedical Instrumentation
389(6)
25.4 Multiphysics Modeling of Ionic Electroactivity in IPMCs
395(1)
25.5 Conclusion
396(1)
References
396(2)
Chapter 26 A Comprehensive Review of Electroactive Paper Actuators 398(25)
Jaehwan Kim
Seongcheol Mun
Hyun-U Ko
Lindong Zhai
Seung-Ki Min
Hyun Chan Kim
26.1 Introduction
398(5)
26.2 Cellulose EAPap
403(6)
26.2.1 Fabrication of EAPap
403(1)
26.2.2 Actuation Principle
404(1)
26.2.3 Physical Properties
405(2)
26.2.4 Piezoelectric Properties
407(2)
26.3 Ionic EAPap
409(4)
26.3.1 CP-Coated EAPap
409(1)
26.3.2 PEO-PEG Blended EAPap
409(1)
26.3.3 Chitosan Blended EAPap
410(2)
26.3.4 IL Dispersed EAPap
412(1)
26.4 Hybrid EAPap
413(7)
26.4.1 CNT Blended EAPap
413(2)
26.4.2 TiO2-Coated EAPap
415(1)
26.4.3 Sn02-Coated EAPap
416(4)
26.5 Conclusions
420(1)
References
420(3)
Subject Index 423