Isogeometric Analysis is a groundbreaking computational approach that promises the possibility of integrating the finite element method into conventional spline-based CAD design tools. It thus bridges the gap between numerical analysis and geometry, and moreover it allows to tackle new cutting edge applications at the frontiers of research in science and engineering. This proceedings volume contains a selection of outstanding research papers presented at the second International Workshop on Isogeometric Analysis and Applications, held at Annweiler, Germany, in April 2014.
Preface.- Foreword.- U. Langer, A. Mantzaflaris, S.E. Moore, I.
Toulopoulos: Multipatch Discontinuous Galerkin Isogeometric Analysis.- E.
Brivadis, A. Buffa, B. Wohlmuth, L. Wunderlich: The Influence of Quadrature
Errors on Isogeometric Mortar Methods.- M. Pauley, D.-M. Nguyen, D. Mayer, J.
Speh, O. Weeger, B. Jüttler: The isogeometric segmentation pipeline.- A.
Apostolatos, M. Breitenberger, R. Wuechner, K.-U. Bletzinger: Domain
Decomposition Methods and Kirchhoff-Love Shell Multipatch Coupling in
Isogeometric Analysis.- C. Adam, S. Bouabdallah, M. Zarroug, H. Maitournam: A
reduced integration for Reissner-Mindlin non-linear shell analysis using
T-splines.- F. Cirak and K. Bandara: Multiresolution shape and topology
optimisation with subdivision surfaces.- T. Liao, G. Xu and Y. Zhang: Atom
Simplification and Quality T-mesh Generation for Multi-resolution
Biomolecular Surfaces.- D. Fußeder and B. Simeon: Algorithmic Aspects of
Isogeometric Shape Optimization.- N. Cavallini, O. Weeger, M. S. Pauletti, M.
Martinelli, P. Antolin: Effective Integration of Sophisticated Operators in
Isogeometric Analysis with igatools.- S.K. Kleiss and S.K. Tomar: Two-sided
robust and sharp a posteriori error estimates in isogeometric discretization
of elliptic problems.- A. Kunoth: Multilevel Preconditioning for Variational
Problems.