I INTRODUCTION |
|
|
1 Notations and definitions |
|
|
3 | (9) |
|
|
3 | (1) |
|
|
4 | (3) |
|
|
7 | (1) |
|
|
8 | (2) |
|
1.5 Singular value decomposition |
|
|
10 | (1) |
|
|
10 | (2) |
|
|
12 | (13) |
|
2.1 Stationary iterative methods |
|
|
12 | (1) |
|
2.2 Conjugate gradient iterations |
|
|
13 | (4) |
|
|
17 | (1) |
|
2.4 Conjugate gradient least squares |
|
|
18 | (2) |
|
|
20 | (5) |
II THEORY |
|
|
|
25 | (23) |
|
|
25 | (2) |
|
3.1.1 An example of Toeplitz system |
|
|
25 | (2) |
|
|
27 | (10) |
|
3.2.1 The Levinson Durbin algorithm |
|
|
27 | (2) |
|
3.2.2 The Gohberg Sernencul formula |
|
|
29 | (1) |
|
3.2.3 The fast Cholesky factorization |
|
|
29 | (1) |
|
|
30 | (1) |
|
3.2.5 The Schur algorithm |
|
|
31 | (2) |
|
3.2.6 Superfast direct Toeplitz solvers |
|
|
33 | (2) |
|
3.2.7 Look-ahead algorithms |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
3.4 Toeplitz matrix-vector multiplications |
|
|
37 | (3) |
|
3.4.1 Diagonalization of circulant matrices |
|
|
37 | (1) |
|
3.4.2 Diagonalization of {ω}-circulant matrices |
|
|
38 | (1) |
|
3.4.3 Computation of a Toeplitz matrix |
|
|
39 | (1) |
|
|
40 | (5) |
|
3.6 Conjugate gradient methods for Toeplitz systenis |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
4 Circulant preconditioners |
|
|
48 | (32) |
|
|
48 | (1) |
|
|
48 | (1) |
|
4.3 Strang's preconditioner |
|
|
49 | (7) |
|
4.3.1 Generalized Strang preconditioner |
|
|
56 | (1) |
|
4.4 T. Chan's preconditioner |
|
|
56 | (6) |
|
4.4.1 Huckle's preconditioners |
|
|
61 | (1) |
|
4.5 Other circulant-type preconditioners |
|
|
62 | (3) |
|
4.5.1 Preconditioners by embedding |
|
|
62 | (1) |
|
4.5.2 Preconditioners by minimization of norms |
|
|
62 | (2) |
|
4.5.3 {ω}-circulant preconditioners |
|
|
64 | (1) |
|
|
65 | (1) |
|
4.7 Circulant preconditioners from kernel functions |
|
|
65 | (6) |
|
4.8 Piecewise continuous generating functions |
|
|
71 | (3) |
|
4.9 Non-Hermitian Toeplitz systems |
|
|
74 | (2) |
|
|
76 | (2) |
|
|
78 | (2) |
|
5 Non-circulant type preconditioners |
|
|
80 | (14) |
|
5.1 Optimal transform-based preconditioners |
|
|
80 | (8) |
|
5.1.1 Sine transform-based preconditioner |
|
|
81 | (5) |
|
5.1.2 Cosine transform-based preconditioner |
|
|
86 | (1) |
|
5.1.3 Hartley transform-based preconditioner |
|
|
87 | (1) |
|
5.2 Toeplitz preconditioners |
|
|
88 | (3) |
|
|
91 | (1) |
|
|
92 | (2) |
|
6 Ill-conditioned Toeplitz systems |
|
|
94 | (40) |
|
|
94 | (1) |
|
6.2 Toeplitz-type preconditioners |
|
|
94 | (4) |
|
6.3 Circulant-type preconditioners |
|
|
98 | (4) |
|
6.4 The best circulant preconditioners |
|
|
102 | (10) |
|
6.4.1 Construction of the preconditioner |
|
|
103 | (1) |
|
6.4.2 Properties of the kernel function |
|
|
104 | (5) |
|
6.4.3 Spectra of the preconditioned matrices |
|
|
109 | (3) |
|
|
112 | (2) |
|
|
114 | (16) |
|
6.6.1 Weakly diagonally dominant Toeplitz matrices |
|
|
119 | (3) |
|
6.6.2 More general Toeplitz matrices |
|
|
122 | (1) |
|
6.6.3 Convergence results for full multigrid method |
|
|
123 | (3) |
|
|
126 | (1) |
|
6.6.5 Richardson iteration as smoother |
|
|
127 | (3) |
|
6.7 Recursive-based PCG methods |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
132 | (2) |
|
|
134 | (45) |
|
7.1 Toeplitz-like systems |
|
|
134 | (8) |
|
7.1.1 Normal equations of Toeplitz systems |
|
|
135 | (4) |
|
7.1.2 Toeplitz-plus-Hankel systems |
|
|
139 | (3) |
|
7.2 Toeplitz-plus-band systems |
|
|
142 | (1) |
|
|
143 | (13) |
|
7.3.1 Approximation operators for block matrices |
|
|
143 | (7) |
|
7.3.2 Block preconditioners for general matrices |
|
|
150 | (1) |
|
7.3.3 Quadrantally symmetric matrices |
|
|
151 | (3) |
|
|
154 | (1) |
|
|
155 | (1) |
|
7.4 Toeplitz least squares problems |
|
|
156 | (16) |
|
7.4.1 1D Toeplitz-block least squares problems |
|
|
157 | (3) |
|
7.4.2 2D Toeplitz-block least squares problems |
|
|
160 | (10) |
|
|
170 | (2) |
|
7.5 Total least squares methods |
|
|
172 | (2) |
|
|
174 | (1) |
|
|
175 | (4) |
III APPLICATIONS |
|
|
8 Applications to ODEs and PDEs |
|
|
179 | (32) |
|
|
179 | (1) |
|
8.2 Circulaut preconditioners for elliptic problems |
|
|
180 | (8) |
|
8.3 Sine transform-based preconditioners |
|
|
188 | (5) |
|
8.3.1 Two-dimensional irregular domains |
|
|
191 | (1) |
|
8.3.2 Higher dimensional rectangular domains |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
194 | (1) |
|
8.6 Banded preconditioners for sine Galerkin systems |
|
|
195 | (4) |
|
8.7 Numerical solutions of biharmonic equations |
|
|
199 | (2) |
|
8.8 Hyperbolic and parabolic equations |
|
|
201 | (2) |
|
8.9 Ordinary differential equations |
|
|
203 | (7) |
|
8.9.1 Some families of BVMs |
|
|
204 | (1) |
|
|
205 | (5) |
|
|
210 | (1) |
|
|
210 | (1) |
|
9 Applications to queueing networks |
|
|
211 | (27) |
|
|
211 | (1) |
|
9.2 Overflow queueing networks |
|
|
211 | (4) |
|
9.3 Queueing networks with batch arrivals |
|
|
215 | (4) |
|
9.4 Markov-modulated Poisson processes |
|
|
219 | (11) |
|
9.4.1 Failure-prone manufacturing systems |
|
|
227 | (3) |
|
9.5 Stochastic automata networks |
|
|
230 | (6) |
|
9.5.1 Circulant, preconditioners for SAN |
|
|
232 | (4) |
|
|
236 | (1) |
|
|
237 | (1) |
|
10 Applications to signal processing |
|
|
238 | (1) |
|
|
238 | (1) |
|
10.2 Known statistics solution |
|
|
239 | (1) |
|
10.3 Least squares filters |
|
|
240 | (4) |
|
10.3.1 Linear phase least squares filters |
|
|
242 | (2) |
|
10.4 Recursive least squares computations |
|
|
244 | (2) |
|
10.5 Exponentially weighted least squares computation |
|
|
246 | (2) |
|
|
248 | (1) |
|
|
249 | (1) |
|
11 Applications to image processing |
|
|
250 | (1) |
|
|
250 | (1) |
|
11.2 The one-dimensional deblurring problem |
|
|
250 | (8) |
|
11.2.1 The zero (Dirichlet) boundary conditions |
|
|
252 | (1) |
|
11.2.2 Periodic boundary conditions |
|
|
252 | (1) |
|
11.2.3 Neumann boundary conditions |
|
|
253 | (2) |
|
11.2.4 Tikhonov regularization |
|
|
255 | (1) |
|
11.2.5 A numerical example |
|
|
256 | (2) |
|
11.3 High-resolution image reconstruction |
|
|
258 | (5) |
|
|
263 | (1) |
|
11.4 Total variation regularization |
|
|
263 | (7) |
|
11.4.1 Cosine transform-based preconditioners |
|
|
266 | (1) |
|
11.4.2 The product preconditioner |
|
|
267 | (2) |
|
11.4.3 Numerical examples |
|
|
269 | (1) |
|
11.5 Blind image restoration |
|
|
270 | (5) |
|
11.5.1 Alternating minimization algorithm |
|
|
274 | (1) |
|
11.5.2 A numerical example |
|
|
275 | (1) |
|
11.6 Iterative regularization methods |
|
|
275 | (7) |
|
|
279 | (2) |
|
11.6.2 Symmetric indefinite conjugate gradient methods |
|
|
281 | (1) |
|
11.6.3 Spatial-variant image restoration |
|
|
282 | (1) |
|
|
282 | (1) |
|
|
283 | (2) |
|
12 Applications to integral equations |
|
|
285 | (1) |
|
|
285 | (1) |
|
12.2 Wiener-Hopf equations |
|
|
285 | (7) |
|
12.2.1 Circulant integral operators |
|
|
286 | (3) |
|
12.2.2 Other circulant integral operators |
|
|
289 | (3) |
|
|
292 | (2) |
|
12.3.1 A numerical example |
|
|
293 | (1) |
|
12.4 Inverse lout problems |
|
|
294 | (1) |
|
|
295 | (4) |
|
12.5.1 Regularization by the identity and Laplacian operators |
|
|
296 | (1) |
|
|
297 | (2) |
|
12.6 Boundary integral equations |
|
|
299 | (12) |
|
12.6.1 The optimal circulant integral operator |
|
|
303 | (3) |
|
12.6.2 Condition numbers of the preconditioned systems |
|
|
306 | (2) |
|
|
308 | (1) |
|
12.6.4 A numerical example |
|
|
309 | (2) |
|
12.7 Fast dense matrix methods |
|
|
311 | (12) |
|
12.7.1 Optimal circulant preconditioners |
|
|
315 | (4) |
|
12.7.2 A numerical example |
|
|
319 | (4) |
|
|
323 | (1) |
|
|
324 | (1) |
References |
|
325 | (23) |
Index |
|
348 | |