Muutke küpsiste eelistusi

Lagrangian and Hamiltonian Dynamics [Kõva köide]

(St Andrews University, UK)
  • Formaat: Hardback, 560 pages, kõrgus x laius x paksus: 248x195x32 mm, kaal: 1320 g, 80 figures/illustrations
  • Ilmumisaeg: 05-Jun-2018
  • Kirjastus: Oxford University Press
  • ISBN-10: 0198822375
  • ISBN-13: 9780198822370
  • Formaat: Hardback, 560 pages, kõrgus x laius x paksus: 248x195x32 mm, kaal: 1320 g, 80 figures/illustrations
  • Ilmumisaeg: 05-Jun-2018
  • Kirjastus: Oxford University Press
  • ISBN-10: 0198822375
  • ISBN-13: 9780198822370
An introductory textbook exploring the subject of Lagrangian and Hamiltonian dynamics, with a relaxed and self-contained setting. Lagrangian and Hamiltonian dynamics is the continuation of Newton's classical physics into new formalisms, each highlighting novel aspects of mechanics that gradually build in complexity to form the basis for almost all of theoretical physics. Lagrangian and Hamiltonian dynamics also acts as a gateway to more abstract concepts routed in differential geometry and field theories and can be used to introduce these subject areas to newcomers.

Journeying in a self-contained manner from the very basics, through the fundamentals and onwards to the cutting edge of the subject, along the way the reader is supported by all the necessary background mathematics, fully worked examples, thoughtful and vibrant illustrations as well as an informal narrative and numerous fresh, modern and inter-disciplinary applications.

The book contains some unusual topics for a classical mechanics textbook. Most notable examples include the 'classical wavefunction', Koopman-von Neumann theory, classical density functional theories, the 'vakonomic' variational principle for non-holonomic constraints, the Gibbs-Appell equations, classical path integrals, Nambu brackets and the full framing of mechanics in the language of differential geometry.
Preface xiii
PART I NEWTONIAN MECHANICS
1 Newton's Three Laws
3(12)
1.1 Phase Space
7(1)
1.2 Systems of Particles
8(3)
1.3 The N-body Problem
11(4)
Chapter summary
13(2)
2 Energy and Work
15(9)
Chapter summary
22(2)
3 Introductory Rotational Dynamics
24(10)
Chapter summary
33(1)
4 The Harmonic Oscillator
34(10)
Chapter summary
38(6)
5 Wave Mechanics & Elements of Mathematical Physics
44(11)
PART II LAGRANGIAN MECHANICS
6 Coordinates & Constraints
55(6)
Chapter summary
59(2)
7 The Stationary Action Principle
61(28)
7.1 The Inverse Problem
70(2)
7.2 Higher-Order Theories & the Ostrogradsky Equation
72(1)
7.3 The Second Variation
73(1)
7.4 Functions & Functionals
74(2)
7.5 Boundary Conditions
76(2)
7.6 Variations
78(1)
7.7 Weierstrass-Erdmann Conditions for Broken Extremals
79(1)
7.8 Hamilton-Suslov Principle
79(10)
Chapter summary
80(9)
8 Constrained Lagrangian Mechanics
89(11)
8.1 Holonomic Constraints
89(4)
8.2 Non-Holonomic Constraints
93(7)
Chapter summary
96(4)
9 Point Transformations in Lagrangian Mechanics
100(7)
Chapter summary
103(4)
10 The Jacobi Energy Function
107(8)
Chapter summary
112(3)
11 Symmetries & Lagrangian-Hamilton-Jacobi Theory
115(15)
11.1 Noether's Theorem
115(5)
11.2 Gauge Theory
120(2)
11.3 Isotropic Symmetries
122(1)
11.4 Caratheodory-Hamilton-Jacobi theory
123(7)
Chapter summary
124(6)
12 Near-Equilibrium Oscillations
130(17)
12.1 Normal Modes
137(10)
Chapter summary
140(7)
13 Virtual Work & d'Alembert's Principle
147(20)
13.1 Gauss's Least Constraint & Jourdain's Principle
153(3)
13.2 The Gibbs-Appell Equations
156(11)
Chapter summary
158(9)
PART III CANONICAL MECHANICS
14 The Hamiltonian & Phase Space
167(7)
Chapter summary
172(2)
15 Hamilton's Principle in Phase Space
174(5)
Chapter summary
178(1)
16 Hamilton's Equations & Routhian Reduction
179(11)
16.1 Phase Space Conservation Laws
181(2)
16.2 Routhian Mechanics
183(7)
17 Poisson Brackets & Angular Momentum
190(12)
17.1 Poisson Brackets & Angular Momenta
195(2)
17.2 Poisson Brackets & Symmetries
197(5)
Chapter summary
200(2)
18 Canonical & Gauge Transformations
202(15)
18.1 Canonical Transformations I
202(4)
18.2 Canonical Transformations II
206(5)
18.3 Infinitesimal Canonical Transformations
211(6)
Chapter summary
214(3)
19 Hamilton-Jacobi Theory
217(20)
19.1 Hamilton-Jacobi Theory I
217(7)
19.2 Hamilton-Jacobi Theory II
224(13)
Chapter summary
229(8)
20 Liouville's Theorem & Classical Statistical Mechanics
237(30)
20.1 Liouville's Theorem & the Classical Propagator
237(7)
20.2 Koopman-von Neumann Theory
244(2)
20.3 Classical Statistical Mechanics
246(9)
20.4 Symplectic Integrators
255(12)
Chapter summary
259(8)
21 Constrained Hamiltonian Dynamics
267(10)
Chapter summary
274(3)
22 Autonomous Geometrical Mechanics
277(32)
22.1 A Coordinate-Free Picture
284(7)
22.2 Poisson Manifolds & Symplectic Reduction
291(5)
22.3 Geometrical Lagrangian Mechanics
296(4)
22.4 Elements of Constrained Geometry
300(9)
Chapter summary
303(6)
23 The Structure of Phase Space
309(16)
23.1 Time-Dependent Geometrical Mechanics
313(6)
23.2 Picturing Phase Space
319(6)
Chapter summary
322(3)
24 Near-Integrable Systems
325(20)
24.1 Canonical Perturbation Theory
325(8)
24.2 KAM Theory & Elements of Chaos
333(12)
PART IV CLASSICAL FIELD THEORY
25 Lagrangian Field Theory
345(8)
Chapter summary
350(3)
26 Hamiltonian Field Theory
353(4)
27 Classical Electromagnetism
357(12)
Chapter summary
365(4)
28 Noether's Theorem for Fields
369(16)
Chapter summary
376(9)
29 Classical Path-Integrals
385(12)
29.1 Configuration Space Integrals
385(1)
29.2 Phase Space Integrals
386(11)
PART V PRELIMINARY MATHEMATICS
30 The (Not So?) Basics
397(3)
31 Matrices
400(6)
32 Partial Differentiation
406(13)
33 Legendre Transforms
419(3)
34 Vector Calculus
422(15)
35 Differential Equations
437(6)
36 Calculus of Variations
443(10)
PART VI ADVANCED MATHEMATICS
37 Linear Algebra
453(7)
38 Differential Geometry
460(27)
PART VII EXAM-STYLE QUESTIONS
Appendix A Noether's Theorem Explored
487(4)
Appendix B The Action Principle Explored
491(3)
B.1 Geodesics
491(3)
Appendix C Useful Relations
494(2)
Appendix D Poisson & Nambu Brackets Explored
496(6)
D.1 Symplectic Notation & Nambu Brackets
497(5)
Appendix E Canonical Transformations Explored
502(4)
Appendix F Action-Angle Variables Explored
506(5)
Appendix G Statistical Mechanics Explored
511(3)
G.1 The Boltzmann Factor
511(1)
G.2 Fluctuations
512(2)
Appendix H Biographies
514(13)
H.1 Sir Isaac Newton
514(1)
H.2 Leonhard Euler
515(1)
H.3 Jean d'Alembert
516(1)
H.4 Joseph-Louis Lagrange
517(2)
H.5 Carl Gustav Jacobi
519(1)
H.6 Sir William Hamilton
520(2)
H.7 Simeon Denis Poisson
522(1)
H.8 Amalie Emmy Noether
522(2)
H.9 Ludwig Eduard Boltzmann
524(1)
H.10 Edward Routh
525(1)
H.11 Hendrika van Leeuwen
526(1)
Bibliography 527(6)
Index 533
Peter Mann completed his undergraduate degree in Chemistry at the University of St Andrews. He is now a PhD student at the University of St Andrews investigating spreading phenomena on complex networks and how antibiotic resistance proliferates on different network topologies.